Research Commons
      • Browse 
        • Communities & Collections
        • Titles
        • Authors
        • By Issue Date
        • Subjects
        • Types
        • Series
      • Help 
        • About
        • Collection Policy
        • OA Mandate Guidelines
        • Guidelines FAQ
        • Contact Us
      • My Account 
        • Sign In
        • Register
      View Item 
      •   Research Commons
      • University of Waikato Research
      • Computing and Mathematical Sciences
      • Computing and Mathematical Sciences Papers
      • View Item
      •   Research Commons
      • University of Waikato Research
      • Computing and Mathematical Sciences
      • Computing and Mathematical Sciences Papers
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Maximum gradient dimensionality reduction

      Luo, Xianghui; Durrant, Robert J.
      Thumbnail
      Files
      MGDR_ICPR2018.pdf
      Accepted version, 311.7Kb
      DOI
       10.1109/ICPR.2018.8546198
      Find in your library  
      Citation
      Export citation
      Luo, X., & Durrant, R. J. (2018). Maximum gradient dimensionality reduction. In Proceedings of 2018 24th International Conference on Pattern Recognition (ICPR) (pp. 501–506). Washington, DC, USA: IEEE. https://doi.org/10.1109/ICPR.2018.8546198
      Permanent Research Commons link: https://hdl.handle.net/10289/13139
      Abstract
      We propose a novel dimensionality reduction approach based on the gradient of the regression function. Our approach is conceptually similar to Principal Component Analysis, however instead of seeking a low dimensional representation of the predictors that preserve the sample variance, we project onto a basis that preserves those predictors which induce the greatest change in the response. Our approach has the benefits of being simple and easy to implement and interpret, while still remaining very competitive with sophisticated state-of-the-art approaches.
      Date
      2018
      Type
      Conference Contribution
      Publisher
      IEEE
      Rights
      This is an author’s accepted version of an article published in the Proceedings of 2018 24th International Conference on Pattern Recognition (ICPR). © 2018 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
      Collections
      • Computing and Mathematical Sciences Papers [1454]
      Show full item record  

      Usage

      Downloads, last 12 months
      89
       
       
       

      Usage Statistics

      For this itemFor all of Research Commons

      The University of Waikato - Te Whare Wānanga o WaikatoFeedback and RequestsCopyright and Legal Statement