Show simple item record  

dc.contributor.authorMayo, Michaelen_NZ
dc.contributor.authorKoutny, Tomasen_NZ
dc.contributor.editorBach, K.en_NZ
dc.contributor.editorBunescu, R.en_NZ
dc.contributor.editorMarling, C.en_NZ
dc.contributor.editorWiratunga, N.en_NZ
dc.coverage.spatialSantiago de Compostela, Spain & Virtuallyen_NZ
dc.date.accessioned2020-10-05T22:40:28Z
dc.date.available2020-10-05T22:40:28Z
dc.date.issued2020en_NZ
dc.identifier.citationMayo, M., & Koutny, T. (2020). Neural multi-class classification approach to blood glucose level forecasting with prediction uncertainty visualisation. In K. Bach, R. Bunescu, C. Marling, & N. Wiratunga (Eds.), Proceedings of 5th International Workshop on Knowledge Discovery in Healthcare Data (KDH 2020) (Vol. 2675, pp. 80–84). Santiago de Compostela, Spain & Virtually: CEUR Workshop Proceedings.en
dc.identifier.issn1613-0073en_NZ
dc.identifier.urihttps://hdl.handle.net/10289/13872
dc.description.abstractA machine learning-based method for blood glucose level prediction thirty and sixty minutes in advance based on highly multiclass classification (as opposed to the more traditional regression approach) is proposed. An advantage of this approach is the possibility of modelling and visualising the uncertainty of a prediction across the entire range of blood glucose levels without parametric assumptions such as normality. To demonstrate the approach, a long-short term memory-based neural network classifier is used in conjunction with a blood glucose-specific data preprocessing technique (risk domain transform) to train a set of models and generate predictions for the 2018 and 2020 Blood Glucose Level Prediction Competition datasets. Numeric accuracy results are reported along with examples of the uncertainty visualisation possible using this technique.
dc.format.mimetypeapplication/pdf
dc.language.isoen
dc.publisherCEUR Workshop Proceedingsen_NZ
dc.relation.urihttp://ceur-ws.org/Vol-2675/paper13.pdfen_NZ
dc.rights© Copyright by the authors.
dc.sourceKDH 2020en_NZ
dc.subjectcomputer scienceen_NZ
dc.titleNeural multi-class classification approach to blood glucose level forecasting with prediction uncertainty visualisationen_NZ
dc.typeConference Contribution
dc.relation.isPartOfProceedings of 5th International Workshop on Knowledge Discovery in Healthcare Data (KDH 2020)en_NZ
pubs.begin-page80
pubs.elements-id257590
pubs.end-page84
pubs.finish-date2020-08-30en_NZ
pubs.start-date2020-08-29en_NZ
pubs.volume2675en_NZ


Files in this item

This item appears in the following Collection(s)

Show simple item record