Show simple item record  

dc.contributor.authorCarnein, Matthiasen_NZ
dc.contributor.authorTrautmann, Heikeen_NZ
dc.contributor.authorBifet, Alberten_NZ
dc.contributor.authorPfahringer, Bernharden_NZ
dc.contributor.editorKotsireas, Ilias S.en_NZ
dc.contributor.editorPardalos, Panos M.en_NZ
dc.coverage.spatialAthens, Greeceen_NZ
dc.date.accessioned2021-02-10T22:54:00Z
dc.date.available2021-02-10T22:54:00Z
dc.date.issued2020en_NZ
dc.identifier.citationCarnein, M., Trautmann, H., Bifet, A., & Pfahringer, B. (2020). confstream: automated algorithm selection and configuration of stream clustering algorithms. In I. S. Kotsireas & P. M. Pardalos (Eds.), Proceedings of 14th International Conference on Learning and Intelligent Optimization (LION 2020) (Vol. LNCS 12096, pp. 80–95). Athens, Greece: Springer. https://doi.org/10.1007/978-3-030-53552-0_10en
dc.identifier.isbn9783030535513en_NZ
dc.identifier.issn0302-9743en_NZ
dc.identifier.urihttps://hdl.handle.net/10289/14113
dc.description.abstractMachine learning has become one of the most important tools in data analysis. However, selecting the most appropriate machine learning algorithm and tuning its hyperparameters to their optimal values remains a difficult task. This is even more difficult for streaming applications where automated approaches are often not available to help during algorithm selection and configuration. This paper proposes the first approach for automated algorithm selection and configuration of stream clustering algorithms. We train an ensemble of different stream clustering algorithms and configurations in parallel and use the best performing configuration to obtain a clustering solution. By drawing new configurations from better performing ones, we are able to improve the ensemble performance over time. In large experiments on real and artificial data we show how our ensemble approach can improve upon default configurations and can also compete with a-posteriori algorithm configuration. Our approach is considerably faster than a-posteriori approaches and applicable in real-time. In addition, it is not limited to stream clustering and can be generalised to all streaming applications, including stream classification and regression.en_NZ
dc.format.mimetypeapplication/pdf
dc.language.isoen
dc.publisherSpringeren_NZ
dc.rightsThis is a post-peer-review, pre-copyedit version of an article published in the Proceedings of 14th International Conference on Learning and Intelligent Optimization (LION 2020). The final authenticated version is available online at: http://dx.doi.org/10.1007/978-3-030-53552-0_10
dc.sourceLION 2020en_NZ
dc.subjectcomputer scienceen_NZ
dc.subjectstream clusteringen_NZ
dc.subjectdata streamsen_NZ
dc.subjectautomated machine learningen_NZ
dc.subjectalgorithm configurationen_NZ
dc.subjectalgorithm selectionen_NZ
dc.subjectMachine learning
dc.titleconfstream: automated algorithm selection and configuration of stream clustering algorithmsen_NZ
dc.typeConference Contribution
dc.identifier.doi10.1007/978-3-030-53552-0_10en_NZ
dc.relation.isPartOfProceedings of 14th International Conference on Learning and Intelligent Optimization (LION 2020)en_NZ
pubs.begin-page80
pubs.elements-id256917
pubs.end-page95
pubs.finish-date2020-05-28en_NZ
pubs.publication-statusPublisheden_NZ
pubs.start-date2020-05-24en_NZ
pubs.volumeLNCS 12096en_NZ
dc.identifier.eissn1611-3349en_NZ


Files in this item

This item appears in the following Collection(s)

Show simple item record