Show simple item record  

dc.contributor.authorRaymond, Onyekachien_NZ
dc.contributor.authorBühl, Michaelen_NZ
dc.contributor.authorLane, Joseph R.en_NZ
dc.contributor.authorHenderson, Williamen_NZ
dc.contributor.authorBrothers, Penelope J.en_NZ
dc.contributor.authorPlieger, Paul G.en_NZ
dc.date.accessioned2021-03-17T03:04:14Z
dc.date.available2021-03-17T03:04:14Z
dc.date.issued2020en_NZ
dc.identifier.citationRaymond, O., Bühl, M., Lane, J. R., Henderson, W., Brothers, P. J., & Plieger, P. G. (2020). Ab initio molecular dynamics investigation of beryllium complexes. Inorganic Chemistry, 59(4), 2413–2425. https://doi.org/10.1021/acs.inorgchem.9b03309en
dc.identifier.issn0020-1669en_NZ
dc.identifier.urihttps://hdl.handle.net/10289/14186
dc.description.abstractStructures of aqueous [Be(H₂O)₄]²⁺, its outer-sphere and inner-sphere complexes with F⁻, Cl⁻, and SO₄²⁻, and dinuclear complexes with a [Be₂(κ-OH)(κ-SO₄)]⁺ core have been studied through Car–Parrinello molecular dynamics (CPMD) simulations with the BLYP functional. According to constrained CPMD/BLYP simulations and pointwise thermodynamic integration, the free energy of deprotonation of [Be(H₂O)₄]²⁺ and its binding free energy with F⁻ are 9.6 and −6.2 kcal/mol, respectively, in good accord with available experimental data. The computed activation barriers for replacing a water ligand in [Be(H₂O)₄]²⁺ with F⁻ and SO₄²⁻, 10.9 and 13.6 kcal/mol, respectively, are also in good qualitative agreement with available experimental data. These ligand-substitution reactions are indicated to follow associative interchange mechanisms with backside (SN2-like) attack of the anion relative to the aquo ligand it is displacing. Outperforming static density functional theory computations of the salient kinetic and thermodynamic quantities involving simple polarizable continuum solvent models, CPMD simulations are validated as a promising tool for studying the structures and speciation of beryllium complexes in aqueous solution.
dc.format.mimetypeapplication/pdf
dc.language.isoenen_NZ
dc.publisherAmerican Chemical Societyen_NZ
dc.rightsThis is an author’s accepted version of an article published in the journal: Inorganic Chemistry. © 2020 American Chemical Society.
dc.subjectScience & Technologyen_NZ
dc.subjectPhysical Sciencesen_NZ
dc.subjectChemistry, Inorganic & Nuclearen_NZ
dc.subjectChemistryen_NZ
dc.subjectDENSITY-FUNCTIONAL THEORYen_NZ
dc.subjectLIGAND-EXCHANGE PROCESSESen_NZ
dc.subjectWATERen_NZ
dc.subjectMECHANISMen_NZ
dc.subjectENERGYen_NZ
dc.subjectCATIONen_NZ
dc.subjectTHERMOCHEMISTRYen_NZ
dc.subjectDEPROTONATIONen_NZ
dc.subjectSUBSTITUTIONen_NZ
dc.subjectCHEMISTRYen_NZ
dc.titleAb initio molecular dynamics investigation of beryllium complexesen_NZ
dc.typeJournal Article
dc.identifier.doi10.1021/acs.inorgchem.9b03309en_NZ
dc.relation.isPartOfInorganic Chemistryen_NZ
pubs.begin-page2413
pubs.elements-id250818
pubs.end-page2425
pubs.issue4en_NZ
pubs.publication-statusPublisheden_NZ
pubs.volume59en_NZ
dc.identifier.eissn1520-510Xen_NZ


Files in this item

This item appears in the following Collection(s)

Show simple item record