Research Commons
      • Browse 
        • Communities & Collections
        • Titles
        • Authors
        • By Issue Date
        • Subjects
        • Types
        • Series
      • Help 
        • About
        • Collection Policy
        • OA Mandate Guidelines
        • Guidelines FAQ
        • Contact Us
      • My Account 
        • Sign In
        • Register
      View Item 
      •   Research Commons
      • University of Waikato Research
      • Science and Engineering
      • Science and Engineering Papers
      • View Item
      •   Research Commons
      • University of Waikato Research
      • Science and Engineering
      • Science and Engineering Papers
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Theoretical electroencephalogram stationary spectrum for a white-noise-driven cortex: Evidence for a general anesthetic-induced phase transition

      Steyn-Ross, Moira L.; Steyn-Ross, D. Alistair; Sleigh, James W.; Liley, D. T.
      DOI
       10.1103/PhysRevE.60.7299
      Find in your library  
      Citation
      Export citation
      Steyn-Ross, M. L., Steyn-Ross, D. A., Sleigh, J. W. & Liley, D. T. (1999). Theoretical electroencephalogram stationary spectrum for a white-noise-driven cortex: Evidence for a general anesthetic-induced phase transition. Physical Review E, 60, 7299- 7311.
      Permanent Research Commons link: https://hdl.handle.net/10289/1424
      Abstract
      We present a model for the dynamics of a cerebral cortex in which inputs to neuronal assemblies are treated as random Gaussian fluctuations about a mean value. We incorporate the effect of general anesthetic agents on the cortex as a modulation of the inhibitory neurotransmitter rate constant. Stochastic differential equations are derived for the state variable he, the average excitatory soma potential, coherent fluctuations of which are believed to be the source of scalp-measured electroencephalogram (EEG) signals. Using this stochastic approach we derive a stationary (long-time limit) fluctuation spectrum for he. The model predicts that there will be three distinct stationary (equilibrium) regimes for cortical activity. In region I (“coma”), corresponding to a strong inhibitory anesthetic effect, he is single valued, large, and negative, so that neuronal firing rates are suppressed. In region II for a zero or small anesthetic effect, he can take on three values, two of which are stable; we label the stable solutions as “active” (enhanced firing) and “quiescent” (suppressed firing). For region III, corresponding to negative anesthetic (i.e., analeptic) effect, he again becomes single valued, but is now small and negative, resulting in strongly elevated firing rates (“seizure”). If we identify region II as associated with the conscious state of the cortex, then the model predicts that there will be a rapid transit between the active-conscious and comatose unconscious states at a critical value of anesthetic concentration, suggesting the existence of phase transitions in the cortex. The low-frequency spectral power in the he signal should increase strongly during the initial stage of anesthesia induction, before collapsing to much lower values after the transition into comatose-unconsciousness. These qualitative predictions are consistent with clinical measurements by Bührer et al. [Anaesthesiology 77, 226 (1992)], MacIver et al. [ibid. 84, 1411 (1996)], and Kuizenga et al. [Br. J. Anaesthesia 80, 725 (1998)]. This strong increase in EEG spectral power in the vicinity of the critical point is similar to the divergences observed during thermodynamic phase transitions. We show that the divergence in low-frequency power in our model is a natural consequence of the existence of turning points in the trajectory of stationary states for the cortex.
      Date
      1999
      Type
      Journal Article
      Collections
      • Science and Engineering Papers [3077]
      Show full item record  

      Usage

       
       
       

      Usage Statistics

      For this itemFor all of Research Commons

      The University of Waikato - Te Whare Wānanga o WaikatoFeedback and RequestsCopyright and Legal Statement