Research Commons
      • Browse 
        • Communities & Collections
        • Titles
        • Authors
        • By Issue Date
        • Subjects
        • Types
        • Series
      • Help 
        • About
        • Collection Policy
        • OA Mandate Guidelines
        • Guidelines FAQ
        • Contact Us
      • My Account 
        • Sign In
        • Register
      View Item 
      •   Research Commons
      • University of Waikato Research
      • Science and Engineering
      • Science and Engineering Papers
      • View Item
      •   Research Commons
      • University of Waikato Research
      • Science and Engineering
      • Science and Engineering Papers
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Gap junctions mediate large-scale Turing structures in a mean-field cortex driven by subcortical noise

      Steyn-Ross, Moira L.; Steyn-Ross, D. Alistair; Wilson, Marcus T.; Sleigh, James W.
      DOI
       10.1103/PhysRevE.76.011916
      Find in your library  
      Citation
      Export citation
      Steyn-Ross, M. L., Steyn-Ross, D. A., Wilson, M. T. & Sleigh, J. W. (2007). Gap junctions mediate large-scale Turing structures in a mean-field cortex driven by subcortical noise. Physical Review E, 76, 011916.
      Permanent Research Commons link: https://hdl.handle.net/10289/1436
      Abstract
      One of the grand puzzles in neuroscience is establishing the link between cognition and the disparate patterns of spontaneous and task-induced brain activity that can be measured clinically using a wide range of detection modalities such as scalp electrodes and imaging tomography. High-level brain function is not a single-neuron property, yet emerges as a cooperative phenomenon of multiply-interacting populations of neurons. Therefore a fruitful modeling approach is to picture the cerebral cortex as a continuum characterized by parameters that have been averaged over a small volume of cortical tissue. Such mean-field cortical models have been used to investigate gross patterns of brain behavior such as anesthesia, the cycles of natural sleep, memory and erasure in slow-wave sleep, and epilepsy. There is persuasive and accumulating evidence that direct gap-junction connections between inhibitory neurons promote synchronous oscillatory behavior both locally and across distances of some centimeters, but, to date, continuum models have ignored gap-junction connectivity. In this paper we employ simple mean-field arguments to derive an expression for D2, the diffusive coupling strength arising from gap-junction connections between inhibitory neurons. Using recent neurophysiological measurements reported by Fukuda et al. [J. Neurosci. 26, 3434 (2006)], we estimate an upper limit of D2 0.6 cm2. We apply a linear stability analysis to a standard mean-field cortical model, augmented with gap-junction diffusion, and find this value for the diffusive coupling strength to be close to the critical value required to destabilize the homogeneous steady state. Computer simulations demonstrate that larger values of D2 cause the noise-driven model cortex to spontaneously crystalize into random mazelike Turing structures: centimeter-scale spatial patterns in which regions of high-firing activity are intermixed with regions of low-firing activity. These structures are consistent with the spatial variations in brain activity patterns detected with the BOLD (blood oxygen–level–dependent) signal detected with magnetic resonance imaging, and may provide a natural substrate for synchronous gamma-band rhythms observed across separated EEG (electroencephalogram) electrodes.
      Date
      2007
      Type
      Journal Article
      Publisher
      American Physical Society: doi:10.1103/PhysRevE.76.011916
      Collections
      • Science and Engineering Papers [3019]
      Show full item record  

      Usage

       
       
       

      Usage Statistics

      For this itemFor all of Research Commons

      The University of Waikato - Te Whare Wānanga o WaikatoFeedback and RequestsCopyright and Legal Statement