Show simple item record  

dc.contributor.authorYap, Moi Hoonen_NZ
dc.contributor.authorHachiuma, Ryoen_NZ
dc.contributor.authorAlavi, Azadehen_NZ
dc.contributor.authorBrüngel, Raphaelen_NZ
dc.contributor.authorCassidy, Billen_NZ
dc.contributor.authorGoyal, Manuen_NZ
dc.contributor.authorZhu, Hongtaoen_NZ
dc.contributor.authorRückert, Johannesen_NZ
dc.contributor.authorOlshansky, Mosheen_NZ
dc.contributor.authorHuang, Xiaoen_NZ
dc.contributor.authorSaito, Hideoen_NZ
dc.contributor.authorHassanpour, Saeeden_NZ
dc.contributor.authorFriedrich, Christoph M.en_NZ
dc.contributor.authorAscher, David B.en_NZ
dc.contributor.authorSong, Anpingen_NZ
dc.contributor.authorKajita, Hirokien_NZ
dc.contributor.authorGillespie, Daviden_NZ
dc.contributor.authorReeves, Neil D.en_NZ
dc.contributor.authorPappachan, Joseph M.en_NZ
dc.contributor.authorO'Shea, Claireen_NZ
dc.contributor.authorFrank, Eibeen_NZ
dc.date.accessioned2021-07-14T21:47:27Z
dc.date.available2021-07-14T21:47:27Z
dc.date.issued2021en_NZ
dc.identifier.citationYap, M. H., Hachiuma, R., Alavi, A., Brüngel, R., Cassidy, B., Goyal, M., … Frank, E. (2021). Deep learning in diabetic foot ulcers detection: A comprehensive evaluation. Computers in Biology and Medicine, 135, 104596–104596. https://doi.org/10.1016/j.compbiomed.2021.104596en
dc.identifier.issn0010-4825en_NZ
dc.identifier.urihttps://hdl.handle.net/10289/14444
dc.description.abstractThere has been a substantial amount of research involving computer methods and technology for the detection and recognition of diabetic foot ulcers (DFUs), but there is a lack of systematic comparisons of state-of-the-art deep learning object detection frameworks applied to this problem. DFUC2020 provided participants with a comprehensive dataset consisting of 2,000 images for training and 2,000 images for testing. This paper summarizes the results of DFUC2020 by comparing the deep learning-based algorithms proposed by the winning teams: Faster R–CNN, three variants of Faster R–CNN and an ensemble method; YOLOv3; YOLOv5; EfficientDet; and a new Cascade Attention Network. For each deep learning method, we provide a detailed description of model architecture, parameter settings for training and additional stages including pre-processing, data augmentation and post-processing. We provide a comprehensive evaluation for each method. All the methods required a data augmentation stage to increase the number of images available for training and a post-processing stage to remove false positives. The best performance was obtained from Deformable Convolution, a variant of Faster R–CNN, with a mean average precision (mAP) of 0.6940 and an F1-Score of 0.7434. Finally, we demonstrate that the ensemble method based on different deep learning methods can enhance the F1-Score but not the mAP.
dc.format.mimetypeapplication/pdf
dc.language.isoenen_NZ
dc.publisherElsevier BVen_NZ
dc.rights© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
dc.subjectcomputer scienceen_NZ
dc.subjectdiabetic foot ulcersen_NZ
dc.subjectobject detectionen_NZ
dc.subjectmachine learningen_NZ
dc.subjectdeep learningen_NZ
dc.titleDeep learning in diabetic foot ulcers detection: A comprehensive evaluationen_NZ
dc.typeJournal Article
dc.identifier.doi10.1016/j.compbiomed.2021.104596en_NZ
dc.relation.isPartOfComputers in Biology and Medicineen_NZ
pubs.begin-page104596
pubs.elements-id262229
pubs.end-page104596
pubs.publication-statusAccepteden_NZ
pubs.volume135en_NZ
uow.identifier.article-no104596


Files in this item

This item appears in the following Collection(s)

Show simple item record