Research Commons
      • Browse 
        • Communities & Collections
        • Titles
        • Authors
        • By Issue Date
        • Subjects
        • Types
        • Series
      • Help 
        • About
        • Collection Policy
        • OA Mandate Guidelines
        • Guidelines FAQ
        • Contact Us
      • My Account 
        • Sign In
        • Register
      View Item 
      •   Research Commons
      • University of Waikato Research
      • Computing and Mathematical Sciences
      • Computing and Mathematical Sciences Papers
      • View Item
      •   Research Commons
      • University of Waikato Research
      • Computing and Mathematical Sciences
      • Computing and Mathematical Sciences Papers
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      A Toolbox for Learning from Relational Data with Propositional and Multi-instance Learners

      Reutemann, Peter; Pfahringer, Bernhard; Frank, Eibe
      DOI
       10.1007/978-3-540-30549-1_95
      Link
       www.springerlink.com
      Find in your library  
      Citation
      Export citation
      Reutemann, P., Pfahringer, B. & Frank, E. (2005). A Toolbox for Learning from Relational Data with Propositional and Multi-instance Learners. In G.I. Webb & Xinghuo Yu(Eds.), Proceedings of 17th Australian Joint Conference on Artificial Intelligence, Cairns, Australia, December 4-6, 2004.(pp. 1017-1023). Berlin: Springer.
      Permanent Research Commons link: https://hdl.handle.net/10289/1447
      Abstract
      Most databases employ the relational model for data storage. To use this data in a propositional learner, a propositionalization step has to take place. Similarly, the data has to be transformed to be amenable to a multi-instance learner. The Proper Toolbox contains an extended version of RELAGGS, the Multi-Instance Learning Kit MILK, and can also combine the multi-instance data with aggregated data from RELAGGS. RELAGGS was extended to handle arbitrarily nested relations and to work with both primary keys and indices. For MILK the relational model is flattened into a single table and this data is fed into a multi-instance learner. REMILK finally combines the aggregated data produced by RELAGGS and the multi-instance data, flattened for MILK, into a single table that is once again the input for a multi-instance learner. Several well-known datasets are used for experiments which highlight the strengths and weaknesses of the different approaches.
      Date
      2005
      Type
      Conference Contribution
      Publisher
      Springer
      Collections
      • Computing and Mathematical Sciences Papers [1441]
      Show full item record  

      Usage

       
       
       

      Usage Statistics

      For this itemFor all of Research Commons

      The University of Waikato - Te Whare Wānanga o WaikatoFeedback and RequestsCopyright and Legal Statement