dc.contributor.author | Frank, Eibe | |
dc.contributor.author | Witten, Ian H. | |
dc.coverage.spatial | Conference held at Bled, Slovenia | en_NZ |
dc.date.accessioned | 2008-12-01T03:56:12Z | |
dc.date.available | 2008-12-01T03:56:12Z | |
dc.date.issued | 1999 | |
dc.identifier.citation | Frank, E. & Witten, I.H.(1999). Making better use of global discretization. In Proceeding of 16th International Conference on Machine Learning, Bled, Slovenia (pp. 115-123). San Francisco: Morgan Kaufmann Publishers. | en_US |
dc.identifier.uri | https://hdl.handle.net/10289/1507 | |
dc.description.abstract | Before applying learning algorithms to datasets, practitioners often globally discretize any numeric attributes. If the algorithm cannot handle numeric attributes directly, prior discretization is essential. Even if it can, prior discretization often accelerates induction, and may produce simpler and more accurate classifiers.
As it is generally done, global discretization denies the learning algorithm any chance of taking advantage of the ordering information implicit in numeric attributes. However, a simple transformation of discretized data preserves this information in a form that learners can use. We show that, compared to using the discretized data directly, this transformation significantly increases the accuracy of decision trees built by C4.5, decision lists built by PART, and decision tables built using the wrapper method, on several bench-mark datasets. Moreover, it can significantly reduce the size of the resulting classifiers.
This simple technique makes global discretization an even more useful tool for data preprocessing | en_US |
dc.format.mimetype | application/pdf | |
dc.language.iso | en | |
dc.publisher | Morgan Kaufmann Publishers Inc., San Francisco, CA, USA | en_US |
dc.relation.uri | http://www-ai.ijs.si/SasoDzeroski/ICML99/main.html | en_US |
dc.rights | This article has been published in Proceeding of 16th International Conference on Machine Learning, Bled, Slovenia (pp. 115-123). ©1999 Morgan Kaufmann. | en_US |
dc.source | 16th International Conference on Machine Learning (ICML 99) | en_NZ |
dc.subject | computer science | en_US |
dc.subject | discretization | en_US |
dc.subject | Machine learning | |
dc.title | Making better use of global discretization | en_US |
dc.type | Conference Contribution | en_US |
dc.relation.isPartOf | 16th International Machine Learning Conference | en_NZ |
pubs.begin-page | 115 | en_NZ |
pubs.elements-id | 25142 | |
pubs.end-page | 123 | en_NZ |
pubs.finish-date | 1999-06-30 | en_NZ |
pubs.start-date | 1999-06-27 | en_NZ |