Research Commons
      • Browse 
        • Communities & Collections
        • Titles
        • Authors
        • By Issue Date
        • Subjects
        • Types
        • Series
      • Help 
        • About
        • Collection Policy
        • OA Mandate Guidelines
        • Guidelines FAQ
        • Contact Us
      • My Account 
        • Sign In
        • Register
      View Item 
      •   Research Commons
      • University of Waikato Research
      • Computing and Mathematical Sciences
      • Computing and Mathematical Sciences Papers
      • View Item
      •   Research Commons
      • University of Waikato Research
      • Computing and Mathematical Sciences
      • Computing and Mathematical Sciences Papers
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Practical feature subset selection for machine learning

      Hall, Mark A.; Smith, Lloyd A.
      Thumbnail
      Files
      Practical feature subset selection for machine learning.pdf
      224.2Kb
      Link
       www.springer.com
      Find in your library  
      Citation
      Export citation
      Hall, M. A. & Smith, L. A. (1998). Practical feature subset selection for machine learning. In C. McDonald(Ed.), Computer Science ’98 Proceedings of the 21st Australasian Computer Science Conference ACSC’98, Perth, 4-6 February, 1998(pp. 181-191). Berlin: Springer.
      Permanent Research Commons link: https://hdl.handle.net/10289/1512
      Abstract
      Machine learning algorithms automatically extract knowledge from machine readable information. Unfortunately, their success is usually dependant on the quality of the data that they operate on. If the data is inadequate, or contains extraneous and irrelevant information, machine learning algorithms may produce less accurate and less understandable results, or may fail to discover anything of use at all. Feature subset selection can result in enhanced performance, a reduced hypothesis search space, and, in some cases, reduced storage requirement. This paper describes a new feature selection algorithm that uses a correlation based heuristic to determine the “goodness” of feature subsets, and evaluates its effectiveness with three common machine learning algorithms. Experiments using a number of standard machine learning data sets are presented. Feature subset selection gave significant improvement for all three algorithms
      Date
      1998
      Type
      Conference Contribution
      Publisher
      Springer
      Rights
      This is an author’s version of an article has been published in Computer Science ’98 Proceedings of the 21st Australasian Computer Science Conference ACSC’98, Perth, 4-6 February, 1998. © Springer.
      Collections
      • Computing and Mathematical Sciences Papers [1455]
      Show full item record  

      Usage

      Downloads, last 12 months
      2,013
       
       

      Usage Statistics

      For this itemFor all of Research Commons

      The University of Waikato - Te Whare Wānanga o WaikatoFeedback and RequestsCopyright and Legal Statement