Research Commons
      • Browse 
        • Communities & Collections
        • Titles
        • Authors
        • By Issue Date
        • Subjects
        • Types
        • Series
      • Help 
        • About
        • Collection Policy
        • OA Mandate Guidelines
        • Guidelines FAQ
        • Contact Us
      • My Account 
        • Sign In
        • Register
      View Item 
      •   Research Commons
      • University of Waikato Research
      • Science and Engineering
      • Science and Engineering Papers
      • View Item
      •   Research Commons
      • University of Waikato Research
      • Science and Engineering
      • Science and Engineering Papers
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      A kraft mill-integrated hydrothermal liquefaction process for liquid fuel co-production

      Ong, Benjamin H.Y.; Walmsley, Timothy Gordon; Atkins, Martin John; Walmsley, Michael R.W.
      Thumbnail
      Files
      processes-08-01216-v2.pdf
      2.651Mb
      DOI
       10.3390/pr8101216
      Find in your library  
      Permanent link to Research Commons version
      https://hdl.handle.net/10289/15225
      Abstract
      There is a growing awareness of the need to mitigate greenhouse gas emissions and the inevitable depletion of fossil fuel. With the market pull for the growth in sustainable and renewable alternative energy, the challenge is to develop cost-effective, large-scale renewable energy alternatives for all energy sectors, of which transport fuels are one significant area. This work presents a summary of novel methods for integrating kraft mills with a hydrothermal liquefaction process. The application of these methods has resulted in a proposed kraft mill-integrated design that produces a liquid fuel and could provide net mitigation of 64.6 kg CO2-e/GJ, compared to conventional petrol and diesel fuels, at a minimum fuel selling price of 1.12–1.38 NZD/LGE of fuel, based on the case study. This paper concludes that a hydrothermal liquefaction process with product upgrading has promising economic potential and environmental benefits that are significantly amplified by integrating with an existing kraft mill. At the current global kraft pulp production rate, if each kraft mill transforms into a biorefinery based on hydrothermal liquefaction, the biofuel production is an estimated 290 Mt (9.9 EJ).
      Date
      2020
      Type
      Journal Article
      Publisher
      MDPI
      Rights
      © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
      Collections
      • Science and Engineering Papers [3124]
      Show full item record  

      Usage

      Downloads, last 12 months
      92
       
       
       

      Usage Statistics

      For this itemFor all of Research Commons

      The University of Waikato - Te Whare Wānanga o WaikatoFeedback and RequestsCopyright and Legal Statement