Show simple item record  

dc.contributor.authorWang, Hongyuen_NZ
dc.contributor.authorFraser, Huonen_NZ
dc.contributor.authorGouk, Henryen_NZ
dc.contributor.authorFrank, Eibeen_NZ
dc.contributor.authorPfahringer, Bernharden_NZ
dc.contributor.authorMayo, Michaelen_NZ
dc.contributor.authorHolmes, Geoffen_NZ
dc.contributor.editorBrazdil, Pen_NZ
dc.contributor.editorvan Rijn, JNen_NZ
dc.contributor.editorGouk, Hen_NZ
dc.contributor.editorMohr, Fen_NZ
dc.coverage.spatialGrenoble, Franceen_NZ
dc.date.accessioned2023-01-25T20:22:24Z
dc.date.available2023-01-25T20:22:24Z
dc.date.issued2022en_NZ
dc.identifier.urihttps://hdl.handle.net/10289/15453
dc.description.abstractWe summarise experiments (Wang et al., 2022) evaluating cross-domain few-shot learning (CDFSL) with feature extractors trained on ImageNet. The work explores the transfer performance of extracted features on five target domains with different degrees of similarity to ImageNet. These experiments compare robust classifiers and normalisation methods, consider multi-instance learning algorithms, and evaluate the effect of using features extracted by different ResNet backbones at various levels of their convolutional hierarchies. The cosine similarity classifier and 1-vs-rest logistic regression with ℓ2 regularisation are the top-performing robust classifiers in the evaluation, and ℓ2 normalisation improves performance on all five target domains when using LDA as the robust classifier. The results also show that feature extractors with the highest capacity do not always achieve the best CDFSL performance. Lastly, simple multi-instance learning methods are shown to improve classifier accuracy.
dc.format.mimetypeapplication/pdf
dc.language.isoen
dc.publisherPMLRen_NZ
dc.relation.urihttps://proceedings.mlr.press/v191/wang22a/wang22a.pdfen_NZ
dc.rights© 2022 The Authors
dc.rights.urihttps://proceedings.mlr.press/
dc.sourceECMLPKDD Workshop on Meta-Knowledge Transferen_NZ
dc.subjectcomputer scienceen_NZ
dc.subjectcross-domain few-shot learningen_NZ
dc.subjectnormalisationen_NZ
dc.subjectpretrained feature extractorsen_NZ
dc.titleExperiments in cross-domain few-shot learning for image classification: extended abstracten_NZ
dc.typeConference Contribution
dc.relation.isPartOfECMLPKDD Workshop on Meta-Knowledge Transfer, Proceedings of Machine Learning Researchen_NZ
pubs.begin-page81
pubs.elements-id302311
pubs.end-page83
pubs.finish-date2022-09-23en_NZ
pubs.publication-statusPublisheden_NZ
pubs.publisher-urlhttps://proceedings.mlr.press/v191/#Prefaceen_NZ
pubs.start-date2022-09-23en_NZ
pubs.volume191en_NZ


Files in this item

This item appears in the following Collection(s)

Show simple item record