Show simple item record  

dc.contributor.authorSamuel, Jamesen_NZ
dc.contributor.authorNair, Shalini Ramachandranen_NZ
dc.contributor.authorJoanna, Philip Sarathaen_NZ
dc.contributor.authorGurupatham, Beulah Gnana Ananthien_NZ
dc.contributor.authorRoy, Krishanuen_NZ
dc.contributor.authorLim, James Boon Piangen_NZ
dc.coverage.spatialSwitzerlanden_NZ
dc.date.accessioned2023-07-10T23:35:36Z
dc.date.available2023-07-10T23:35:36Z
dc.date.issued2023-04-10en_NZ
dc.identifier.issn1996-1944en_NZ
dc.identifier.urihttps://hdl.handle.net/10289/15877
dc.description.abstractThe construction industry is on the lookout for cost-effective structural members that are also environmentally friendly. Built-up cold-formed steel (CFS) sections with minimal thickness can be used to make beams at a lower cost. Plate buckling in CFS beams with thin webs can be avoided by using thick webs, adding stiffeners, or strengthening the web with diagonal rebars. When CFS beams are designed to carry heavy loads, their depth logically increases, resulting in an increase in building floor height. The experimental and numerical investigation of CFS composite beams reinforced with diagonal web rebars is presented in this paper. A total of twelve built-up CFS beams were used for testing, with the first six designed without web encasement and the remaining six designed with web encasement. The first six were constructed with diagonal rebars in the shear and flexure zones, while the other two with diagonal rebars in the shear zone, and the last two without diagonal rebars. The next set of six beams was constructed in the same manner, but with a concrete encasement of the web, and all the beams were then tested. Fly ash, a pozzolanic waste byproduct of thermal power plants, was used as a 40% replacement for cement in making the test specimens. CFS beam failure characteristics, load-deflection behavior, ductility, load-strain relationship, moment-curvature relationship, and lateral stiffness were all investigated. The results of the experimental tests and the nonlinear finite element analysis performed in ANSYS software were found to be in good agreement. It was discovered that CFS beams with fly ash concrete encased webs have twice the moment resisting capacity of plain CFS beams, resulting in a reduction in building floor height. The results also confirmed that the composite CFS beams have high ductility, making them a reliable choice for earthquake-resistant structures.en_NZ
dc.format.mimetypeapplication/pdf
dc.language.isoengen_NZ
dc.rights© 2023 The Authors. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
dc.subjectcold-formed steelen_NZ
dc.subjectconcrete encasementen_NZ
dc.subjectdiagonal web rebarsen_NZ
dc.subjectductilityen_NZ
dc.subjectfinite element analysisen_NZ
dc.subjectfly-ashen_NZ
dc.subjectlateral stiffnessen_NZ
dc.subjectmoment–curvature relationshipen_NZ
dc.titleComposite Cold-Formed Steel Beams with Diagonal Rebars for Earthquake-Resistant Buildingsen_NZ
dc.typeJournal Article
dc.identifier.doi10.3390/ma16083002en_NZ
dc.relation.isPartOfMaterials (Basel)en_NZ
pubs.elements-id306682
pubs.issue8en_NZ
pubs.publication-statusPublished onlineen_NZ
pubs.volume16en_NZ


Files in this item

This item appears in the following Collection(s)

Show simple item record