Research Commons
      • Browse 
        • Communities & Collections
        • Titles
        • Authors
        • By Issue Date
        • Subjects
        • Types
        • Series
      • Help 
        • About
        • Collection Policy
        • OA Mandate Guidelines
        • Guidelines FAQ
        • Contact Us
      • My Account 
        • Sign In
        • Register
      View Item 
      •   Research Commons
      • University of Waikato Research
      • Computing and Mathematical Sciences
      • Computing and Mathematical Sciences Papers
      • View Item
      •   Research Commons
      • University of Waikato Research
      • Computing and Mathematical Sciences
      • Computing and Mathematical Sciences Papers
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Propositionalisation of Profile Hidden Markov Models for Biological Sequence Analysis

      Mutter, Stefan; Pfahringer, Bernhard; Holmes, Geoffrey
      DOI
       10.1007/978-3-540-89378-3_27
      Link
       springerlink.com
      Find in your library  
      Citation
      Export citation
      Mutter, S., Pfahringer, B.& Holmes, G. (2008). Propositionalisation of Profile Hidden Markov Models for Biological Sequence Analysis. In W. Wobcke & M. Zhang(Eds), Proceedings of 21st Australasian Joint Conference on Artificial Intelligence Auckland, New Zealand, December 1-5, 2008(pp. 278-288 ). Berlin, Germany: Springer.
      Permanent Research Commons link: https://hdl.handle.net/10289/1762
      Abstract
      Hidden Markov Models are a widely used generative model for analysing sequence data. A variant, Profile Hidden Markov Models are a special case used in Bioinformatics to represent, for example, protein families. In this paper we introduce a simple propositionalisation method for Profile Hidden Markov Models. The method allows the use of PHMMs discriminatively in a classification task. Previously, kernel approaches have been proposed to generate a discriminative description for an HMM, but require the explicit definition of a similarity measure for HMMs. Propositionalisation does not need such a measure and allows the use of any propositional learner including kernel-based approaches. We show empirically that using propositionalisation leads to higher accuracies in comparison with PHMMs on benchmark datasets.
      Date
      2008
      Type
      Conference Contribution
      Publisher
      Springer
      Collections
      • Computing and Mathematical Sciences Papers [1455]
      Show full item record  

      Usage

       
       
       

      Usage Statistics

      For this itemFor all of Research Commons

      The University of Waikato - Te Whare Wānanga o WaikatoFeedback and RequestsCopyright and Legal Statement