dc.contributor.author | Mutter, Stefan | |
dc.contributor.author | Pfahringer, Bernhard | |
dc.contributor.author | Holmes, Geoffrey | |
dc.coverage.spatial | Conference held at Auckland, New Zealand | en_NZ |
dc.date.accessioned | 2009-01-09T03:50:10Z | |
dc.date.available | 2009-01-09T03:50:10Z | |
dc.date.issued | 2008 | |
dc.identifier.citation | Mutter, S., Pfahringer, B.& Holmes, G. (2008). Propositionalisation of Profile Hidden Markov Models for Biological Sequence Analysis. In W. Wobcke & M. Zhang(Eds), Proceedings of 21st Australasian Joint Conference on Artificial Intelligence Auckland, New Zealand, December 1-5, 2008(pp. 278-288 ). Berlin, Germany: Springer. | en |
dc.identifier.uri | https://hdl.handle.net/10289/1762 | |
dc.description.abstract | Hidden Markov Models are a widely used generative model for analysing sequence data. A variant, Profile Hidden Markov Models are a special case used in Bioinformatics to represent, for example, protein families. In this paper we introduce a simple propositionalisation method for Profile Hidden Markov Models. The method allows the use of PHMMs discriminatively in a classification task. Previously, kernel approaches have been proposed to generate a discriminative description for an HMM, but require the explicit definition of a similarity measure for HMMs. Propositionalisation does not need such a measure and allows the use of any propositional learner including kernel-based approaches. We show empirically that using propositionalisation leads to higher accuracies in comparison with PHMMs on benchmark datasets. | en |
dc.language.iso | en | |
dc.publisher | Springer | en |
dc.relation.uri | http://springerlink.com/content/d437418p250n8846/?p=06b0def15b544e6cb0cf979f64397547&pi=26 | en |
dc.source | AI 2008 | en_NZ |
dc.subject | computer science | en |
dc.subject | Hidden Markov Model | en |
dc.subject | Machine learning | |
dc.title | Propositionalisation of Profile Hidden Markov Models for Biological Sequence Analysis | en |
dc.type | Conference Contribution | en |
dc.identifier.doi | 10.1007/978-3-540-89378-3_27 | en |
dc.relation.isPartOf | Proc Twenty-first Australian Joint Conference on Artificial Intelligence | en_NZ |
pubs.begin-page | 278 | en_NZ |
pubs.elements-id | 18133 | |
pubs.end-page | 288 | en_NZ |
pubs.finish-date | 2008-12-05 | en_NZ |
pubs.start-date | 2008-12-01 | en_NZ |
pubs.volume | Lecture Notes in Artificial Intelligence 5360 | en_NZ |