Research Commons
      • Browse 
        • Communities & Collections
        • Titles
        • Authors
        • By Issue Date
        • Subjects
        • Types
        • Series
      • Help 
        • About
        • Collection Policy
        • OA Mandate Guidelines
        • Guidelines FAQ
        • Contact Us
      • My Account 
        • Sign In
        • Register
      View Item 
      •   Research Commons
      • University of Waikato Research
      • Computing and Mathematical Sciences
      • Computing and Mathematical Sciences Papers
      • View Item
      •   Research Commons
      • University of Waikato Research
      • Computing and Mathematical Sciences
      • Computing and Mathematical Sciences Papers
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Analysis of interval-censored data from circular migrant and non-migrant sexual partnerships using the EM algorithm

      Zuma, K.; Lurie, M.; Jorgensen, Murray A.
      DOI
       10.1002/sim.2539
      Link
       www3.interscience.wiley.com
      Find in your library  
      Citation
      Export citation
      Zuma, K., Lurie, M. & Jorgensen, M.(2006). Analysis of interval-censored data from circular migrant and non-migrant sexual partnerships using the EM algorithm. Statistics in Medicine. 26(2), 309-319.
      Permanent Research Commons link: https://hdl.handle.net/10289/1800
      Abstract
      In epidemiological studies where subjects are seen periodically on follow-up visits, interval-censored data occur naturally. The exact time the change of state (such as HIV seroconversion) occurs is not known exactly, only that it occurred sometime within a specific time interval. Methods of estimation for interval-censored data are readily available when data are independent. However, methods for correlated interval-censored data are not well developed. This paper considers an approach for estimating the parameters when data are interval-censored and correlated within sexual partnerships. We consider the exact event times for interval-censored observations as unobserved data, only known to be between two time points. Dependency induced by sexual partnerships is modelled as frailties assuming a gamma distribution for frailties and an exponential distribution on the time to infection. This formulation facilitates application of the expectation-maximization (EM) algorithm. Maximization process maximizes the standard survival frailty model. Results show high degree of heterogeneity between sexual partnerships. Intervention strategies aimed at combating the spread of HIV and other sexually transmitted infections (STI)s should treat sexual partnerships as social units and fully incorporate the effects of migration in their strategies. Copyright © 2006 John Wiley & Sons, Ltd.
      Date
      2006
      Type
      Journal Article
      Publisher
      John Wiley & Sons Limited
      Collections
      • Computing and Mathematical Sciences Papers [1455]
      Show full item record  

      Usage

       
       
       

      Usage Statistics

      For this itemFor all of Research Commons

      The University of Waikato - Te Whare Wānanga o WaikatoFeedback and RequestsCopyright and Legal Statement