Research Commons
      • Browse 
        • Communities & Collections
        • Titles
        • Authors
        • By Issue Date
        • Subjects
        • Types
        • Series
      • Help 
        • About
        • Collection Policy
        • OA Mandate Guidelines
        • Guidelines FAQ
        • Contact Us
      • My Account 
        • Sign In
        • Register
      View Item 
      •   Research Commons
      • University of Waikato Research
      • Computing and Mathematical Sciences
      • Computing and Mathematical Sciences Papers
      • View Item
      •   Research Commons
      • University of Waikato Research
      • Computing and Mathematical Sciences
      • Computing and Mathematical Sciences Papers
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Optimising ITS behaviour with Bayesian networks and decision theory

      Mayo, Michael; Mitrovic, Antonija
      Thumbnail
      Files
      Optimising ITS behaviour.pdf
      249.3Kb
      Link
       www.iaied.org
      Citation
      Export citation
      Mayo, M. & Mitrovic, A.(2001). Optimising ITS behaviour with Bayesian networks and decision theory. International Journal of Artificial Intelligence in Education, 12, 124-153.
      Permanent Research Commons link: https://hdl.handle.net/10289/1997
      Abstract
      We propose and demonstrate a methodology for building tractable normative intelligent tutoring systems (ITSs). A normative ITS uses a Bayesian network for long-term student modelling and decision theory to select the next tutorial action. Because normative theories are a general framework for rational behaviour, they can be used to both define and apply learning theories in a rational, and therefore optimal, way. This contrasts to the more traditional approach of using an ad-hoc scheme to implement the learning theory. A key step of the methodology is the induction and the continual adaptation of the Bayesian network student model from student performance data, a step that is distinct from other recent Bayesian net approaches in which the network structure and probabilities are either chosen beforehand by an expert, or by efficiency considerations. The methodology is demonstrated by a description and evaluation of CAPIT, a normative constraint-based tutor for English capitalisation and punctuation. Our evaluation results show that a class using the full normative version of CAPIT learned the domain rules at a faster rate than the class that used a non-normative version of the same system.
      Date
      2001
      Type
      Journal Article
      Publisher
      International Artificial Intelligence Education Society
      Rights
      This article has been published in the journal: International Journal of Artificial Intelligence in Education. ©2001 the International AIED Society. Used with permission from IOS Press.
      Collections
      • Computing and Mathematical Sciences Papers [1455]
      Show full item record  

      Usage

      Downloads, last 12 months
      105
       
       

      Usage Statistics

      For this itemFor all of Research Commons

      The University of Waikato - Te Whare Wānanga o WaikatoFeedback and RequestsCopyright and Legal Statement