Research Commons
      • Browse 
        • Communities & Collections
        • Titles
        • Authors
        • By Issue Date
        • Subjects
        • Types
        • Series
      • Help 
        • About
        • Collection Policy
        • OA Mandate Guidelines
        • Guidelines FAQ
        • Contact Us
      • My Account 
        • Sign In
        • Register
      View Item 
      •   Research Commons
      • University of Waikato Research
      • Computing and Mathematical Sciences
      • Computing and Mathematical Sciences Papers
      • View Item
      •   Research Commons
      • University of Waikato Research
      • Computing and Mathematical Sciences
      • Computing and Mathematical Sciences Papers
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Propagation and dissipation of Alfvén waves in stellar atmospheres permeated by isothermal winds

      Verdini, A.; Velli, M.; Oughton, Sean
      Thumbnail
      Files
      Propagation and dissipation.pdf
      526.6Kb
      DOI
       10.1051/0004-6361:20052748
      Find in your library  
      Citation
      Export citation
      Verdi, A., Velli, M. & Oughton, S. (2005). Propagation and dissipation of Alfvén waves in stellar atmospheres permeated by isothermal winds. Astronomy & Astrophysics, 444(1), 233-244.
      Permanent Research Commons link: https://hdl.handle.net/10289/1999
      Abstract
      We investigate the nonlinear evolution of Alfvén waves in a radially stratified isothermal atmosphere with wind, from the atmospheric base out to the Alfvénic point. Nonlinear interactions, triggered by wave reflection due to the atmospheric gradients, are assumed to occur mainly in directions perpendicular to the mean radial magnetic field. The nonlinear coupling between waves propagating in opposite directions is modeled by a phenomenological term, containing an integral turbulent length scale, which acts as a dissipative coefficient for waves of a given frequency. Although the wind acceleration profile is not determined self-consistently one may estimate the dissipation rate inside the layer and follow the evolution of an initial frequency spectrum. Reflection of low frequency waves drives dissipation across the whole spectrum, and steeper gradients, i.e. lower coronal temperatures, enhance the dissipation rate. Moreover, when reasonable wave amplitudes are considered, waves of all frequencies damp at the same rate and the spectrum is not modified substantially during propagation. Therefore the sub-Alfvénic coronal layer acts differently when waves interact nonlinearly, no longer behaving as a frequency dependent filter once reflection-generated nonlinear interactions are included, at least within the classes of models discussed here.
      Date
      2005
      Type
      Journal Article
      Publisher
      E D P Sciences
      Rights
      This article has been published in the journal: Astronomy & Astrophysics. ©2005 Astronomy & Astrophysics. Used with permission.
      Collections
      • Computing and Mathematical Sciences Papers [1455]
      Show full item record  

      Usage

      Downloads, last 12 months
      54
       
       
       

      Usage Statistics

      For this itemFor all of Research Commons

      The University of Waikato - Te Whare Wānanga o WaikatoFeedback and RequestsCopyright and Legal Statement