Show simple item record  

dc.contributor.authorSinescu, Vasile
dc.contributor.authorJoe, Stephen
dc.coverage.spatialIasi, Romaniaen_NZ
dc.date.accessioned2009-02-10T22:52:47Z
dc.date.available2009-02-10T22:52:47Z
dc.date.issued2006
dc.identifier.citationSinescu, V. & Joe, S. (2006). Good intermediate-rank lattice rules based on the weighted star discrepancy. In O. Carja & I.I. Vrabie (Eds), Applied Analysis and Differential Equations (pp. 329-342). World Scientific.en
dc.identifier.urihttps://hdl.handle.net/10289/2002
dc.description.abstractWe study the problem of constructing good intermediate-rank lattice rules in the sense of having a low weighted star discrepancy. The intermediate-rank rules considered here are obtained by “copying” rank-1 lattice rules. We show that such rules can be constructed using a component-by-component technique and prove that the bound for the weighted star discrepancy achieves the optimal convergence rate.en
dc.format.mimetypeapplication/pdf
dc.language.isoen
dc.publisherWorld Scientificen
dc.relation.urihttp://eproceedings.worldscinet.com/9789812708229/9789812708229_0028.htmlen
dc.rightsThis is an author’s version of a paper published in the book: Applied Analysis and Differential Equations. ©2006 World Scientific.en
dc.sourceInternational Conference of Applied Analysis and Differentialen_NZ
dc.subjectmathematicsen
dc.subjectintermediate-rank lattice rulesen
dc.subjectweighted star discrepancyen
dc.subjectcomponent-by-component constructionen
dc.titleGood intermediate-rank lattice rules based on the weighted star discrepancyen
dc.typeChapter in Booken
dc.identifier.doi10.1142/9789812708229_0028en_NZ
dc.relation.isPartOfInternational Conference of Applied Analysis and Differentialen_NZ
pubs.begin-page329en_NZ
pubs.elements-id17405
pubs.end-page342en_NZ
pubs.finish-date2006-09-09en_NZ
pubs.start-date2006-09-04en_NZ


Files in this item

This item appears in the following Collection(s)

Show simple item record