dc.contributor.author | Broughan, Kevin A. | |
dc.date.accessioned | 2009-02-22T20:27:52Z | |
dc.date.available | 2009-02-22T20:27:52Z | |
dc.date.issued | 2002 | |
dc.identifier.citation | Broughan, K.A. (2002). Vanishing of the integral of the Hurwitz zeta function. Bulletin of the Australian Mathematical Society, 65, 121-127. | en |
dc.identifier.uri | https://hdl.handle.net/10289/2037 | |
dc.description.abstract | A proof is given that the improper Riemann integral of δ(s, a) with respect to the real parameter a, taken over the interval (0, 1], vanishes for all complex s with R(s) < 1. The integral does not exist (as a finite real number) when R(s) ≥ 1. | en |
dc.format.mimetype | application/pdf | |
dc.language.iso | en | |
dc.publisher | Australian Mathematical Society | en_NZ |
dc.relation.uri | http://www.austms.org.au/Bulletin | en |
dc.rights | This is an author’s final version of an article published in the journal: Bulletin of the Australian Mathematical Society. © 2002 Australian Mathematical Society. Used with permission. | en |
dc.subject | Hurwitz zeta function | en |
dc.subject | functional equation | en |
dc.subject | improper Riemann integral | en |
dc.title | Vanishing of the integral of the Hurwitz zeta function | en |
dc.type | Journal Article | en |
dc.identifier.doi | 10.1017/S000497270002013X | en_NZ |
dc.relation.isPartOf | Bulletin of the Australian Mathematical Society | en_NZ |
pubs.begin-page | 121 | en_NZ |
pubs.elements-id | 27351 | |
pubs.end-page | 127 | en_NZ |
pubs.issue | 1 | en_NZ |
pubs.volume | 65 | en_NZ |