Research Commons
      • Browse 
        • Communities & Collections
        • Titles
        • Authors
        • By Issue Date
        • Subjects
        • Types
        • Series
      • Help 
        • About
        • Collection Policy
        • OA Mandate Guidelines
        • Guidelines FAQ
        • Contact Us
      • My Account 
        • Sign In
        • Register
      View Item 
      •   Research Commons
      • University of Waikato Research
      • Science and Engineering
      • Science and Engineering Papers
      • View Item
      •   Research Commons
      • University of Waikato Research
      • Science and Engineering
      • Science and Engineering Papers
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      A fluid flow perspective on the diagenesis of Te Aute limestones

      Ricketts, Brian D.; Nelson, Campbell S.; Caron, Vincent
      Thumbnail
      Files
      content.pdf
      12.42Mb
      DOI
       10.1080/00288306.2004.9515091
      Link
       www.rsnz.org
      Find in your library  
      Citation
      Export citation
      Ricketts, B. D., Caron, V. & Nelson, C. S. (2004). A fluid flow perspective on the diagenesis of Te Aute limestones. New Zealand Journal of Geology & Geophysics. 47(4), 823-838.
      Permanent Research Commons link: https://hdl.handle.net/10289/206
      Abstract
      Pliocene cool-water, bioclastic Te Aute limestones in East Coast Basin, New Zealand, accumulated either in shelfal shoal areas or about structurally shallow growth fold structures in the tectonically active accretionary forearc prism. Up to five stages of carbonate cementation are recognised, based on cement sequence-stratigraphic concepts, that formed on the seafloor during exposure of the limestones before burial, during burial, uplift, and deformation. Two principal fluid types are identified--topography-driven meteoric fluids and compaction-driven fluids. We have developed conceptual and quantitative models that attempt to relate the physical characteristics of fluid flow to the cement paragenesis. In particular, we have simulated the effects of uplift of the axial ranges bordering East Coast Basin in terms of the degree of penetration of a meteoric wedge into the basin. The dynamics of meteoric flow changed dramatically during uplift over the last 2 m.y. such that the modelled extent of the meteoric wedge is at least 40 km across the basin, and the penetration depth 1500 m or more corresponding with measured freshwater intersections in some oil wells. Cement-fluid relationships include: (1) true marine cements that precipitated in areas remote from shallow freshwater lenses; (2) pre-compaction cements that formed in shallow freshwater lenses beneath limestone "islands"; (3) post-compaction cements derived from compaction-driven flow during burial; (4) early uplift-related fracture-fill cements formed during deformation of the accretionary prism and uplift of the axial ranges; and (5) late uplift-related cements associated with uplift into a shallow meteoric regime.
      Date
      2004-12-01
      Type
      Journal Article
      Publisher
      The Royal Society of New Zealand
      Rights
      The final, definitive version of this article has been published in the Journal, New Zealand Journal of Geology & Geophysics, 47(4), (2004), (c) Royal Society of New Zealand at the Royal Society of New Zealand Journals Online webpage.
      Collections
      • Science and Engineering Papers [3119]
      Show full item record  

      Usage

      Downloads, last 12 months
      85
       
       
       

      Usage Statistics

      For this itemFor all of Research Commons

      The University of Waikato - Te Whare Wānanga o WaikatoFeedback and RequestsCopyright and Legal Statement