Research Commons
      • Browse 
        • Communities & Collections
        • Titles
        • Authors
        • By Issue Date
        • Subjects
        • Types
        • Series
      • Help 
        • About
        • Collection Policy
        • OA Mandate Guidelines
        • Guidelines FAQ
        • Contact Us
      • My Account 
        • Sign In
        • Register
      View Item 
      •   Research Commons
      • University of Waikato Research
      • Computing and Mathematical Sciences
      • Computing and Mathematical Sciences Papers
      • View Item
      •   Research Commons
      • University of Waikato Research
      • Computing and Mathematical Sciences
      • Computing and Mathematical Sciences Papers
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Large-scale attribute selection using wrappers

      Gutlein, Martin; Frank, Eibe; Hall, Mark A.; Karwath, Andreas
      Thumbnail
      Files
      large-scale attribute selection.pdf
      222.3Kb
      DOI
       10.1109/CIDM.2009.4938668
      Find in your library  
      Citation
      Export citation
      Gutlein, M., Frank, E., Hall, M. & Karwath, A. (2009). Large-scale attribute selection using wrappers. In Proceedings of IEEE Symposium on Computational Intelligence and Data Mining, March 30, 2009-April 2 2009 (pp. 332-339). Washington: IEEE Computer Society.
      Permanent Research Commons link: https://hdl.handle.net/10289/2205
      Abstract
      Scheme-specific attribute selection with the wrapper and variants of forward selection is a popular attribute selection technique for classification that yields good results. However, it can run the risk of overfitting because of the extent of the search and the extensive use of internal cross-validation. Moreover, although wrapper evaluators tend to achieve superior accuracy compared to filters, they face a high computational cost. The problems of overfitting and high runtime occur in particular on high-dimensional datasets, like microarray data.

      We investigate Linear Forward Selection, a technique to reduce the number of attributes expansions in each forward selection step. Our experiments demonstrate that this approach is faster, finds smaller subsets and can even increase the accuracy compared to standard forward selection. We also investigate a variant that applies explicit subset size determination in forward selection to combat overfitting, where the search is forced to stop at a precomputed “optimal” subset size. We show that this technique reduces subset size while maintaining comparable accuracy.
      Date
      2009
      Type
      Conference Contribution
      Publisher
      IEEE Computer Society
      Rights
      This is an author’s version of an article published in the Proceedings of IEEE Symposium on Computational Intelligence and Data Mining, March 30, 2009-April 2 2009. ©2009 IEEE Computer Society.
      Collections
      • Computing and Mathematical Sciences Papers [1455]
      Show full item record  

      Usage

      Downloads, last 12 months
      128
       
       
       

      Usage Statistics

      For this itemFor all of Research Commons

      The University of Waikato - Te Whare Wānanga o WaikatoFeedback and RequestsCopyright and Legal Statement