Loading...
Thumbnail Image
Item

An integrated sequence stratigraphic, palaeoenvironmental, and chronostratigraphic analysis of the Tangahoe Formation, southern Taranaki coast, with implications for mid-Pliocene (c. 3.4–3.0 Ma) glacio-eustatic sea-level changes

Abstract
Sediments of the mid-Pliocene (c. 3.4–3.0 Ma) Tangahoe Formation exposed in cliffs along the South Taranaki coastline of New Zealand comprise a 270 m thick, cyclothemic shallow-marine succession that has been gently warped into a north to south trending, low angle anticline. This study examines the sedimentologic, faunal, and petrographic characteristics of 10 Milankovitch-scale (6th order), shallow-marine depositional sequences exposed on the western limb of the anticline. The sequences are recognised on the basis of the cyclic vertical stacking of their constituent lithofacies, which are bound by sharp wave cut surfaces produced during transgressive shoreface erosion. Each sequence comprises three parts: (1) a 0.2–2 m thick, deepening upwards, basal suite of reworked bioclastic lag deposits (onlap shellbed) and/or an overlying matrix supported, molluscan shellbed of offshore shelf affinity (backlap shellbed); (2) a 5–20 m thick, gradually shoaling, aggradational siltstone succession; and (3) a 5–10 m thick, strongly progradational, well sorted “forced regressive” shoreline sandstone. The three-fold subdivision corresponds to transgressive, highstand, and regressive systems tracts (TSTs, HSTs, and RSTs) respectively, and represents deposition during a glacio-eustatic sea-level cycle. Lowstand systems tract sediments are not recorded because the outcrop is situated c. 100 km east of the contemporary shelf edge and was subaerially exposed at that time. Well developed, sharp- and gradational-based forced regressive sandstones contain a variety of storm-emplaced sedimentary structures, and represent the rapid and abrupt basinward translation of the shoreline on to a storm dominated, shallow shelf during eustatic sea-level fall. Increased supply of sediment from north-west South Island during “forced regression” is indicated from petrographic analyses of the heavy mineralogy of the sandstones. A chronology based on biostratigraphy and the correlation of a new magnetostratigraphy to the magnetic polarity timescale allows: (1) identification of the Mammoth (C2An.2r) and Kaena (C2An.1r) subchrons; (2) correlation of the coastal section to the Waipipian Stage; and (3) estimation of the age of the coastal section as 3.36–3.06 Ma. Qualitative assessment of foraminiferal census data and molluscan palaeoecology reveals cyclic changes in water depth from shelf to shoreline environments during the deposition of each sequence. Seven major cycles in water depth of between 20 and 50m have been correlated to individual 40 ka glacio-eustatic sea-level cycles on the marine oxygen isotope timescale. The coastal Tangahoe Formation provides a shallow-marine record of global glacio-eustasy prior to the development of significant ice sheets on Northern Hemisphere continents, and supports evidence from marine δ18O archives that changes in Antarctic ice volume were occurring during the Pliocene.
Type
Journal Article
Type of thesis
Series
Citation
Naish, T. R., Wehland, F., Wilson, G. S., Browne, G. H., Cook, R. A., Morgans, H. E. G., … Richetts, B. (2005). An integrated sequence stratigraphic, palaeoenvironmental, and chronostratigraphic analysis of the Tangahoe Formation, southern Taranaki coast, with implications for mid-Pliocene (c. 3.4–3.0 Ma) glacio-eustatic sea-level changes. Journal of the Royal Society of New Zealand, 35(1&2), 151-196.
Date
2005
Publisher
SIR Publishing
Degree
Supervisors
Rights
This article has been published in the journal: the journal of Royal Society of New Zealand. ©2005 The Royal society of New Zealand