Improving adaptive bagging methods for evolving data streams

Loading...
Thumbnail Image

Publisher link

Rights

This is an author’s accepted version of an article published in the Book: ACML 2009. © 2009 Springer.

Abstract

We propose two new improvements for bagging methods on evolving data streams. Recently, two new variants of Bagging were proposed: ADWIN Bagging and Adaptive-Size Hoeffding Tree (ASHT) Bagging. ASHT Bagging uses trees of different sizes, and ADWIN Bagging uses ADWIN as a change detector to decide when to discard underperforming ensemble members. We improve ADWIN Bagging using Hoeffding Adaptive Trees, trees that can adaptively learn from data streams that change over time. To speed up the time for adapting to change of Adaptive-Size Hoeffding Tree (ASHT) Bagging, we add an error change detector for each classifier. We test our improvements by performing an evaluation study on synthetic and real-world datasets comprising up to ten million examples.

Citation

Bifet, A., Holmes, G., Pfahringer, B. & Gavalda, R. (2009). Improving adaptive bagging methods for evolving data streams. In Z.-H. Zhou & T. Washio(eds), ACML 2009 (pp. 23-37). Berlin, Heidelberg: Spinger-Verlag.

Series name

Date

Publisher

Springer

Degree

Type of thesis

Supervisor