Research Commons
      • Browse 
        • Communities & Collections
        • Titles
        • Authors
        • By Issue Date
        • Subjects
        • Types
        • Series
      • Help 
        • About
        • Collection Policy
        • OA Mandate Guidelines
        • Guidelines FAQ
        • Contact Us
      • My Account 
        • Sign In
        • Register
      View Item 
      •   Research Commons
      • University of Waikato Research
      • Computing and Mathematical Sciences
      • Computing and Mathematical Sciences Papers
      • View Item
      •   Research Commons
      • University of Waikato Research
      • Computing and Mathematical Sciences
      • Computing and Mathematical Sciences Papers
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Identifying music documents in a collection of images

      Bainbridge, David; Bell, Timothy C.
      Thumbnail
      Files
      identifying music documents in a collection of images.pdf
      163.5Kb
      Link
       ismir2006.ismir.net
      Citation
      Export citation
      Bainbridge, D & Bell, T. (2006). Identifying music documents in a collection of images. In R. Dannenberg, K. Lemstrom & A. Tindale (Eds), Proceedings of ISMIR 2006, Seventh International Conference on Music Information Retrieval. Canada, University of Victoria, Victoria, Canada, 8-12 October, 2006 (pp.47-52). Victoria, Canada: University of Victoria.
      Permanent Research Commons link: https://hdl.handle.net/10289/3903
      Abstract
      Digital libraries and search engines are now well-equipped to find images of documents based on queries. Many images of music scores are now available, often mixed up with textual documents and images. For example, using the Google “images” search feature, a search for “Beethoven” will return a number of scores and manuscripts as well as pictures of the composer. In this paper we report on an investigation into methods to mechanically determine if a particular document is indeed a score, so that the user can specify that only musical scores should be returned. The goal is to find a minimal set of features that can be used as a quick test that will be applied to large numbers of documents.

      A variety of filters were considered, and two promising ones (run-length ratios and Hough transform) were evaluated. We found that a method based around run-lengths in vertical scans (RL) that out-performs a comparable algorithm using the Hough transform (HT). On a test set of 1030 images, RL achieved recall and precision of 97.8% and 88.4% respectively while HT achieved 97.8% and 73.5%. In terms of processor time, RL was more than five times as fast as HT.
      Date
      2006
      Type
      Conference Contribution
      Publisher
      University of Victoria
      Rights
      This article has been published in Proceedings of ISMIR 2006, Seventh International Conference on Music Information Retrieval. Canada, University of Victoria, Victoria, Canada, 8-12 October, 2006.
      Collections
      • Computing and Mathematical Sciences Papers [1454]
      Show full item record  

      Usage

      Downloads, last 12 months
      27
       
       

      Usage Statistics

      For this itemFor all of Research Commons

      The University of Waikato - Te Whare Wānanga o WaikatoFeedback and RequestsCopyright and Legal Statement