Research Commons
      • Browse 
        • Communities & Collections
        • Titles
        • Authors
        • By Issue Date
        • Subjects
        • Types
        • Series
      • Help 
        • About
        • Collection Policy
        • OA Mandate Guidelines
        • Guidelines FAQ
        • Contact Us
      • My Account 
        • Sign In
        • Register
      View Item 
      •   Research Commons
      • University of Waikato Research
      • Science and Engineering
      • Science and Engineering Papers
      • View Item
      •   Research Commons
      • University of Waikato Research
      • Science and Engineering
      • Science and Engineering Papers
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Photodegradation leads to increased carbon dioxide losses from terrestrial organic matter

      Rutledge, Susanna; Campbell, David I.; Baldocchi, Dennis; Schipper, Louis A.
      DOI
       10.1111/j.1365-2486.2009.02149.x
      Find in your library  
      Citation
      Export citation
      Rutledge, S., Campbell, D.I., Baldocchi, D. & Schipper, L.A. (2009). Photodegradation leads to increased carbon dioxide losses from terrestrial organic matter. Global Change Biology, published online 16 December 2009.
      Permanent Research Commons link: https://hdl.handle.net/10289/4019
      Abstract
      CO₂ production in terrestrial ecosystems is generally assumed to be solely biologically driven while the role of abiotic processes has been largely overlooked. In addition to microbial decomposition, photodegradation – the direct breakdown of organic matter (OM) by solar irradiance – has been found to contribute to litter mass loss in dry ecosystems. Previous small-scale studies have shown that litter degradation by irradiance is accompanied by emissions of CO₂. However, the contribution of photodegradation to total CO₂ losses at ecosystems scales is unknown. This study determined the proportion of the total CO₂ losses caused by photodegradation in two ecosystems: a bare peatland in New Zealand and a seasonally dry grassland in California. The direct effect of solar irradiance on CO₂ production was examined by comparing daytime CO₂ fluxes measured using eddy covariance (EC) systems with simultaneous measurements made using an opaque chamber and the soil CO₂ gradient technique, and with night-time EC measurements under the same soil temperature and moisture conditions. In addition, a transparent chamber was used to directly measure CO₂ fluxes from OM caused by solar irradiance. Photodegradation contributed 19% of the annual CO₂ flux from the peatland and almost 60% of the dry season CO₂ flux from the grassland, and up to 62% and 92% of the summer mid-day CO₂ fluxes, respectively. Our results suggest that photodegradation may be important in a wide range of ecosystems with exposed OM. Furthermore, the practice of partitioning daytime ecosystem CO₂ exchange into its gross components by assuming that total daytime CO₂ losses can be approximated using estimates of biological respiration alone may be in error. To obtain robust estimates of global ecosystem–atmosphere carbon transfers, the contribution of photodegradation to OM decomposition must be quantified for other ecosystems and the results incorporated into coupled carbon–climate models.
      Date
      2009
      Type
      Journal Article
      Publisher
      Blackwell Publishing
      Collections
      • Science and Engineering Papers [3124]
      Show full item record  

      Usage

       
       
       

      Usage Statistics

      For this itemFor all of Research Commons

      The University of Waikato - Te Whare Wānanga o WaikatoFeedback and RequestsCopyright and Legal Statement