Research Commons
      • Browse 
        • Communities & Collections
        • Titles
        • Authors
        • By Issue Date
        • Subjects
        • Types
        • Series
      • Help 
        • About
        • Collection Policy
        • OA Mandate Guidelines
        • Guidelines FAQ
        • Contact Us
      • My Account 
        • Sign In
        • Register
      View Item 
      •   Research Commons
      • University of Waikato Research
      • Science and Engineering
      • Science and Engineering Papers
      • View Item
      •   Research Commons
      • University of Waikato Research
      • Science and Engineering
      • Science and Engineering Papers
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Toxic cascades: multiple anthropogenic stressors have complex and unanticipated interactive effects on temperate reefs

      Shears, Nick T.; Ross, Philip M.
      DOI
       10.1111/j.1461-0248.2010.01512.x
      Find in your library  
      Citation
      Export citation
      Shears, N.T. & Ross, P.M. (2010). Toxic cascades: multiple anthropogenic stressors have complex and unanticipated interactive effects on temperate reefs. Ecology Letters, published online on 6 July 2010.
      Permanent Research Commons link: https://hdl.handle.net/10289/4117
      Abstract
      In a changing environment multiple anthropogenic stressors can have novel and non-additive effects on interacting species. We investigated the interactive effects of fishing and harmful algal blooms on the predator-sea urchin-macroalgae trophic cascade. Fishing of urchin predators had indirect negative effects on macroalgae, whereas blooms of epi-benthic dinoflagellates (Ostreopsis siamensis) were found to have strong negative effects on urchins and indirect positive effects on macroalgae. Based on these opposing effects, blooms were expected to counteract the cascading effects of fishing. However, a large bloom of Ostreopsis led to greater divergence in macroalgae abundance between reserve and fished sites, as urchins declined at reserve sites but remained stable at fished sites. This resulted from enhanced predation rates on bloom-affected urchins at reserve sites rather than direct lethal effects of Ostreopsis on urchins. We argue that interacting stressors can facilitate or attenuate trophic cascades depending on stressor intensity and complex non-lethal interactions.
      Date
      2010
      Type
      Journal Article
      Publisher
      Wiley Blackwell
      Collections
      • Science and Engineering Papers [3124]
      Show full item record  

      Usage

       
       
       

      Usage Statistics

      For this itemFor all of Research Commons

      The University of Waikato - Te Whare Wānanga o WaikatoFeedback and RequestsCopyright and Legal Statement