Research Commons
      • Browse 
        • Communities & Collections
        • Titles
        • Authors
        • By Issue Date
        • Subjects
        • Types
        • Series
      • Help 
        • About
        • Collection Policy
        • OA Mandate Guidelines
        • Guidelines FAQ
        • Contact Us
      • My Account 
        • Sign In
        • Register
      View Item 
      •   Research Commons
      • University of Waikato Research
      • Science and Engineering
      • Science and Engineering Papers
      • View Item
      •   Research Commons
      • University of Waikato Research
      • Science and Engineering
      • Science and Engineering Papers
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Quantitative experimental comparison of single-beam, sidescan, and multibeam benthic habitat maps

      Schimel, Alexandre Carmelo Gregory; Healy, Terry R.; Johnson, David; Immenga, Dirk
      DOI
       10.1093/icesjms/fsq102
      Link
       icesjms.oxfordjournals.org
      Find in your library  
      Citation
      Export citation
      Schimel, A.C., Healy, T.R., Johnson, D. & Immenga, D. (2010). Quantitative experimental comparison of single-beam, sidescan, and multibeam benthic habitat maps. ICES Journal of Marine Science: Journal du Conseil, 67.
      Permanent Research Commons link: https://hdl.handle.net/10289/4358
      Abstract
      Map comparison is a relatively uncommon practice in acoustic seabed classification to date, contrary to the field of land remote sensing, where it has been developed extensively over recent decades. The aim here is to illustrate the benefits of map comparison in the underwater realm with a case study of three maps independently describing the seabed habitats of the Te Matuku Marine Reserve (Hauraki Gulf, New Zealand). The maps are obtained from a QTC View classification of a single-beam echosounder (SBES) dataset, manual segmentation of a sidescan sonar (SSS) mosaic, and automatic classification of a backscatter dataset from a multibeam echosounder (MBES). The maps are compared using pixel-to-pixel similarity measures derived from the literature in land remote sensing. All measures agree in presenting the MBES and SSS maps as the most similar, and the SBES and SSS maps as the least similar. The results are discussed with reference to the potential of MBES backscatter as an alternative to SSS mosaic for imagery segmentation and to the potential of joint SBES–SSS survey for improved habitat mapping. Other applications of map-similarity measures in acoustic classification of the seabed are suggested.
      Date
      2010
      Type
      Journal Article
      Publisher
      Oxford University Press
      Collections
      • Science and Engineering Papers [3124]
      Show full item record  

      Usage

       
       
       

      Usage Statistics

      For this itemFor all of Research Commons

      The University of Waikato - Te Whare Wānanga o WaikatoFeedback and RequestsCopyright and Legal Statement