Research Commons
      • Browse 
        • Communities & Collections
        • Titles
        • Authors
        • By Issue Date
        • Subjects
        • Types
        • Series
      • Help 
        • About
        • Collection Policy
        • OA Mandate Guidelines
        • Guidelines FAQ
        • Contact Us
      • My Account 
        • Sign In
        • Register
      View Item 
      •   Research Commons
      • University of Waikato Research
      • Science and Engineering
      • Science and Engineering Papers
      • View Item
      •   Research Commons
      • University of Waikato Research
      • Science and Engineering
      • Science and Engineering Papers
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      New parameters controlling the effect of temperature on enzyme activity

      Daniel, Roy M.; Danson, Michael J.; Eisenthal, Robert; Lee, Charles Kai-Wu; Peterson, Michelle E.
      DOI
       10.1042/BST0351543
      Link
       www.biochemsoctrans.org
      Find in your library  
      Citation
      Export citation
      Daniel, R.M., Danson, M.J., Eisenthal, R., Lee, C.K. & Peterson, M.E. (2007). New parameters controlling the effect of temperature on enzyme activity. Biochemical Society Transactions, 35(6), 1543-1546.
      Permanent Research Commons link: https://hdl.handle.net/10289/4437
      Abstract
      Arising from careful measurements of the thermal behaviour of enzymes, a new model, the Equilibrium Model, has been developed to explain more fully the effects of temperature on enzymes. The model describes the effect of temperature on enzyme activity in terms of a rapidly reversible active–inactive (but not denatured) transition, revealing an additional and reversible mechanism for enzyme activity loss in addition to irreversible thermal inactivation at high temperatures. Two new thermal parameters, Teq and ΔHeq, describe the active–inactive transition, and enable a complete description of the effect of temperature on enzyme activity. We describe here the Model and its fit to experimental data, methods for the determination of the Equilibrium Model parameters, and the implications of the Model for the environmental adaptation and evolution of enzymes, and for biotechnology.
      Date
      2007
      Type
      Journal Article
      Publisher
      Portland Press
      Collections
      • Science and Engineering Papers [3124]
      Show full item record  

      Usage

       
       
       

      Usage Statistics

      For this itemFor all of Research Commons

      The University of Waikato - Te Whare Wānanga o WaikatoFeedback and RequestsCopyright and Legal Statement