Research Commons
      • Browse 
        • Communities & Collections
        • Titles
        • Authors
        • By Issue Date
        • Subjects
        • Types
        • Series
      • Help 
        • About
        • Collection Policy
        • OA Mandate Guidelines
        • Guidelines FAQ
        • Contact Us
      • My Account 
        • Sign In
        • Register
      View Item 
      •   Research Commons
      • University of Waikato Research
      • Science and Engineering
      • Science and Engineering Papers
      • View Item
      •   Research Commons
      • University of Waikato Research
      • Science and Engineering
      • Science and Engineering Papers
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      A new intrinsic thermal parameter for enzymes reveals true temperature optima

      Peterson, Michelle E.; Eisenthal, Robert; Danson, Michael J.; Spence, Alastair; Daniel, Roy M.
      Thumbnail
      Files
      JBC-18-02-04.pdf
      1.585Mb
      DOI
       10.1074/jbc.M309143200
      Link
       www.jbc.org
      Find in your library  
      Citation
      Export citation
      Peterson, M.E., Eisenthal, R., Danson, M.J., Spence, A. & Daniel, R.M. (2004). A new intrinsic thermal parameter for enzymes reveals true temperature optima. The Journal of Biological Chemistry, 279(20), 20717-20722.
      Permanent Research Commons link: https://hdl.handle.net/10289/4446
      Abstract
      Two established thermal properties of enzymes are the Arrhenius activation energy and thermal stability. Arising from anomalies found in the variation of enzyme activity with temperature, a comparison has been made of experimental data for the activity and stability properties of five different enzymes with theoretical models. The results provide evidence for a new and fundamental third thermal parameter of enzymes, Teq, arising from a subsecond timescale-reversible temperature-dependent equilibrium between the active enzyme and an inactive (or less active) form. Thus, at temperatures above its optimum, the decrease in enzyme activity arising from the temperature-dependent shift in this equilibrium is up to two orders of magnitude greater than what occurs through thermal denaturation. This parameter has important implications for our understanding of the connection between catalytic activity and thermostability and of the effect of temperature on enzyme reactions within the cell. Unlike the Arrhenius activation energy, which is unaffected by the source (“evolved”) temperature of the enzyme, and enzyme stability, which is not necessarily related to activity, Teq is central to the physiological adaptation of an enzyme to its environmental temperature and links the molecular, physiological, and environmental aspects of the adaptation of life to temperature in a way that has not been described previously. We may therefore expect the effect of evolution on Teq with respect to enzyme temperature/activity effects to be more important than on thermal stability. Teq is also an important parameter to consider when engineering enzymes to modify their thermal properties by both rational design and by directed enzyme evolution.
      Date
      2004
      Type
      Journal Article
      Publisher
      The American Society for Biochemistry and Molecular Biology, Inc.
      Rights
      This is an author's accepted version. This research was originally published in The Journal of Biological Chemistry. © the American Society for Biochemistry and Molecular Biology.
      Collections
      • Science and Engineering Papers [3124]
      Show full item record  

      Usage

      Downloads, last 12 months
      186
       
       
       

      Usage Statistics

      For this itemFor all of Research Commons

      The University of Waikato - Te Whare Wānanga o WaikatoFeedback and RequestsCopyright and Legal Statement