Research Commons
      • Browse 
        • Communities & Collections
        • Titles
        • Authors
        • By Issue Date
        • Subjects
        • Types
        • Series
      • Help 
        • About
        • Collection Policy
        • OA Mandate Guidelines
        • Guidelines FAQ
        • Contact Us
      • My Account 
        • Sign In
        • Register
      View Item 
      •   Research Commons
      • University of Waikato Research
      • Science and Engineering
      • Science and Engineering Papers
      • View Item
      •   Research Commons
      • University of Waikato Research
      • Science and Engineering
      • Science and Engineering Papers
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Use of computer simulation in the interpretation of elastic neutron scattering in complex molecular systems: a small protein in various environments

      Hayward, Jennifer A.; Daniel, Roy M.; Finney, John L.; Smith, Jeremy C.
      DOI
       10.1016/S0301-0104(03)00080-6
      Find in your library  
      Citation
      Export citation
      Hayward, J.A., Daniel, R.M., Finney, J.L. & Smith, J.C. (2003). Use of computer simulation in the interpretation of elastic neutron scattering in complex molecular systems: a small protein in various environments. Chemical Physics, 292(2-3), 389-396.
      Permanent Research Commons link: https://hdl.handle.net/10289/4451
      Abstract
      Elastic and quasielastic neutron scattering experiments on complex systems are often difficult to interpret unambiguously directly using analytical dynamical models. In such cases computer simulations can be used to provide information at atomic detail. Here we report on the use of normal mode analysis (NMA) and molecular dynamics (MD) simulations of a small protein, bovine pancreatic trypsin inhibitor (BPTI) in vacuum and in various solvents. The simulations were performed over a range of temperatures (80–300 K). The vacuum simulation data are used to investigate neutron scattering properties. Effects are determined of instrumental energy resolution and of approximations commonly used to extract mean-square displacement data from elastic scattering experiments. Both the presence of a distribution of mean-square displacements in the protein and the use of the Gaussian approximation to the dynamic structure factor lead to quantified underestimation of the mean-square displacement obtained. Variation of the environment of the protein shows that the dry protein has higher fluctuations at lower temperatures than in the solvated protein, in agreement with recent experiments [1 and 2], that the dynamical transition is solvent-independent on short timescales (also in agreement with experiment [3]), and that at longer timescales it is strongly activated by water.
      Date
      2003
      Type
      Journal Article
      Publisher
      Elsevier
      Collections
      • Science and Engineering Papers [3122]
      Show full item record  

      Usage

       
       
       

      Usage Statistics

      For this itemFor all of Research Commons

      The University of Waikato - Te Whare Wānanga o WaikatoFeedback and RequestsCopyright and Legal Statement