Research Commons
      • Browse 
        • Communities & Collections
        • Titles
        • Authors
        • By Issue Date
        • Subjects
        • Types
        • Series
      • Help 
        • About
        • Collection Policy
        • OA Mandate Guidelines
        • Guidelines FAQ
        • Contact Us
      • My Account 
        • Sign In
        • Register
      View Item 
      •   Research Commons
      • University of Waikato Research
      • Science and Engineering
      • Science and Engineering Papers
      • View Item
      •   Research Commons
      • University of Waikato Research
      • Science and Engineering
      • Science and Engineering Papers
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Hemicellulolytic and cellulolytic functions of the domains of a β-mannanase cloned from Caldicellosiruptor saccharolyticus

      Frangos, Tracy; Bullen, Denise; Bergquist, Peter L.; Daniel, Roy M.
      DOI
       10.1016/S1357-2725(99)00036-9
      Find in your library  
      Citation
      Export citation
      Frangos, T., Bullen, D., Bergquist, P. & Daniel, R.M. (1999). Hemicellulolytic and cellulolytic functions of the domains of a β-mannanase cloned from Caldicellosiruptor saccharolyticus. The International Journal of Biochemistry & Cell Biology, 31(8), 853-859.
      Permanent Research Commons link: https://hdl.handle.net/10289/4462
      Abstract
      Various combinations of the four domains of the multifunctional mannanase from Caldicellosiruptor saccharolyticus have been cloned and expressed in Escherichia coli. The four domains comprise two catalytic domains (1 and 4), and two putative cellulose binding domains (2 and 3). Each of the six gene products (Man1, Man123, Man1234, Man23, Man234 and Man4) was partially purified by heat treatment.

      The enzymes Man1234, Man123 and Man1 exhibited activity on mannans, and Man1234, Man234 and Man4 exhibited activity on xylan and carboxymethylcellulose (CMC). For the complete enzyme (Man1234) all activities were of the same order of magnitude. Activities were additive against a mixture of mannan and xylan or mannan and CMC (but not xylan and CMC). The expression product Man23 exhibited activity on none of the substrates tested, nor did its presence influence thermostability or significantly reduce the Km value for any of the substrates. However, when expressed in combination with domains 1 or 4 it greatly increased their activity.

      We conclude that domain 1 catalyses mannan hydrolysis and domain 4 catalyses xylan and CMC hydrolysis at the same active site: domains 2 and 3 have no obvious function, since they do not reduce substrate Km nor affect thermostability. However, their effect on rates of substrate hydrolysis may indicate a role influencing the conformation of the adjacent catalytic domains.
      Date
      1999-08
      Type
      Journal Article
      Publisher
      Elsevier
      Collections
      • Science and Engineering Papers [3122]
      Show full item record  

      Usage

       
       
       

      Usage Statistics

      For this itemFor all of Research Commons

      The University of Waikato - Te Whare Wānanga o WaikatoFeedback and RequestsCopyright and Legal Statement