Research Commons
      • Browse 
        • Communities & Collections
        • Titles
        • Authors
        • By Issue Date
        • Subjects
        • Types
        • Series
      • Help 
        • About
        • Collection Policy
        • OA Mandate Guidelines
        • Guidelines FAQ
        • Contact Us
      • My Account 
        • Sign In
        • Register
      View Item 
      •   Research Commons
      • University of Waikato Research
      • Science and Engineering
      • Science and Engineering Papers
      • View Item
      •   Research Commons
      • University of Waikato Research
      • Science and Engineering
      • Science and Engineering Papers
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      The effect of low temperatures on enzyme activity

      More, N.; Daniel, Roy M.; Petach, Helen H.
      DOI
       10.1042/bj3050017
      Link
       www.biochemj.org
      Find in your library  
      Citation
      Export citation
      More, N., Daniel, R.M., Petach, H.H. (1995). The effect of low temperatures on enzyme activity. Biochemical Journal, 305(1), 17-20.
      Permanent Research Commons link: https://hdl.handle.net/10289/4473
      Abstract
      The stability of two enzymes from extreme thermophiles (glutamate dehydrogenase from Thermococcales strain AN1 and beta-glucosidase from Caldocellum saccharolyticum expressed in Escherichia coli) has been exploited to allow measurement of activity over a 175 degrees C temperature range, from +90 degrees C to -85 degrees C for the glutamate dehydrogenase and from +90 degrees C to -70 degrees C for the beta-glucosidase. The Arrhenius plots of these enzymes, and those for two mesophilic enzymes (glutamate dehydrogenase from bovine liver and beta-galactosidase from Escherichia coli), exhibit no downward deflection corresponding to the glass transition, found by biophysical measurements of several non-enzymic mesophilic proteins at about -65 degrees C and reflecting a sharp decrease in protein flexibility as the overall motion of groups of atoms ceases.
      Date
      1995
      Type
      Journal Article
      Collections
      • Science and Engineering Papers [3084]
      Show full item record  

      Usage

       
       
       

      Usage Statistics

      For this itemFor all of Research Commons

      The University of Waikato - Te Whare Wānanga o WaikatoFeedback and RequestsCopyright and Legal Statement