Research Commons
      • Browse 
        • Communities & Collections
        • Titles
        • Authors
        • By Issue Date
        • Subjects
        • Types
        • Series
      • Help 
        • About
        • Collection Policy
        • OA Mandate Guidelines
        • Guidelines FAQ
        • Contact Us
      • My Account 
        • Sign In
        • Register
      View Item 
      •   Research Commons
      • University of Waikato Research
      • Science and Engineering
      • Science and Engineering Papers
      • View Item
      •   Research Commons
      • University of Waikato Research
      • Science and Engineering
      • Science and Engineering Papers
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Caldolase, a chelator-insensitive extracellular serine proteinase from a Thermus spp.

      Saravani, G.A.; Cowan, Don A.; Daniel, Roy M.; Morgan, Hugh W.
      Link
       www.biochemj.org
      Citation
      Export citation
      Saravani, G.A., Cowan, D.A., Daniel, R.M. & Morgan, H.W. (1989). Caldolase, a chelator-insensitive extracellular serine proteinase from a Thermus spp. Biochemical Journal, 262, 409-416.
      Permanent Research Commons link: https://hdl.handle.net/10289/4501
      Abstract
      An extracellular alkaline serine proteinase from Thermus strain ToK3 was isolated and purified to homogeneity by (NH4)2SO4 precipitation followed by ion-exchange chromatography on DEAE-cellulose and QAE-Sephadex, affinity chromatography on N alpha-benzyloxycarbonyl-D-phenylalanyl-triethylenetetraminyl-Sepha rose 4B and gel-filtration chromatography on Sephadex G-75. The purified enzyme had a pI of 8.9 and an Mr determined by gel-permeation chromatography of 25,000. The specific activity was about 37,700 proteolytic units/mg with casein as substrate, and the pH optimum was 9.5. Proteolytic activity was inhibited by low concentrations of di-isopropyl phosphorofluoridate and phenylmethanesulphonyl fluoride, but was unaffected by EDTA, EGTA, o-phenanthroline, N-ethyl-5-phenylisoxazolium-3'-sulphonate, N alpha-p-tosyl-L-phenylalanylchloromethane, N alpha-p-tosyl-L-lysylchloromethane, trypsin inhibitors and pepstatin A. The enzyme contained approx. 10% carbohydrate and four disulphide bonds. No Ca2+, Zn2+ or free thiol groups were detected. It hydrolysed several native and dye-linked proteins and synthetic chromogenic peptides and esters. The enzyme was very thermostable (half-life values were 840 min at 80 degrees C, 45 min at 90 degrees C and 5 min at 100 degrees C). The enzyme was unstable at low ionic strength: after 60 min at 75 degrees C in 0.1 M-Tris/acetate buffer, pH 8, only 20% activity remained, compared with no loss in 0.1 M-Tris/acetate buffer, pH 8, containing 0.4 M-NaCl.
      Date
      1989
      Type
      Journal Article
      Collections
      • Science and Engineering Papers [3084]
      Show full item record  

      Usage

       
       

      Usage Statistics

      For this itemFor all of Research Commons

      The University of Waikato - Te Whare Wānanga o WaikatoFeedback and RequestsCopyright and Legal Statement