Research Commons
      • Browse 
        • Communities & Collections
        • Titles
        • Authors
        • By Issue Date
        • Subjects
        • Types
        • Series
      • Help 
        • About
        • Collection Policy
        • OA Mandate Guidelines
        • Guidelines FAQ
        • Contact Us
      • My Account 
        • Sign In
        • Register
      View Item 
      •   Research Commons
      • University of Waikato Research
      • Science and Engineering
      • Science and Engineering Papers
      • View Item
      •   Research Commons
      • University of Waikato Research
      • Science and Engineering
      • Science and Engineering Papers
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Managing denitrification in human-dominated landscapes

      Schipper, Louis A.; Gold, Arthur J.; Davidson, E.A.
      DOI
       10.1016/j.ecoleng.2010.07.027
      Find in your library  
      Citation
      Export citation
      Schipper, L.A., Gold, A.J. & Davidson, E.A. (2010). Managing denitrification in human-dominated landscapes, Ecological Engineering, 36(11), 1503-1506.
      Permanent Research Commons link: https://hdl.handle.net/10289/4581
      Abstract
      Increases in food supply and fossil fuel consumption are among the hallmarks of the 20th century. These changes share a common characteristic – they both contribute to an excess supply of plant-available (i.e., reactive) nitrogen – with negative consequences to ecosystems and water supplies across the globe. While there are vast quantities of di-nitrogen gas (N₂) in the atmosphere, this form of N is unavailable (termed unreactive N) to the vast majority of biological life (Galloway et al., 2003). Globally, this unreactive N can be converted to reactive N by four major processes: N-fixing microorganisms (often in symbiotic association with plants, 140 TgNyear⁻¹), industrial fertilizer production (125 TgNyear⁻¹), fossil fuel combustion (25 TgNyear⁻¹), and lightning (5 TgNyear⁻¹) (Schlesinger, 2009). The benefits of increased food production by use of N inputs are clear. World economies also continue to rely on fossil fuels for transport and fertilizer production. As with many biogeochemical processes that are manipulated at global scales, increased N inputs has adverse and unintended consequences (Galloway et al., 2008).
      Date
      2010
      Type
      Journal Article
      Publisher
      Elsevier
      Collections
      • Science and Engineering Papers [3122]
      Show full item record  

      Usage

       
       
       

      Usage Statistics

      For this itemFor all of Research Commons

      The University of Waikato - Te Whare Wānanga o WaikatoFeedback and RequestsCopyright and Legal Statement