Show simple item record  

dc.contributor.authorKalnins, Ernie G.
dc.contributor.authorKress, Jonathan M.
dc.contributor.authorMiller, W., Jr.
dc.date.accessioned2010-11-03T21:59:02Z
dc.date.available2010-11-03T21:59:02Z
dc.date.issued2010
dc.identifier.citationKalnins, E.G., Kress, J. & Miller, W. Jr. (2010). Tools for verifying classical and quantum superintegrability. Symmetry, Integrability and Geometry: Methods and Applications, 6, 066.en_NZ
dc.identifier.urihttps://hdl.handle.net/10289/4752
dc.description.abstractRecently many new classes of integrable systems in n dimensions occurring in classical and quantum mechanics have been shown to admit a functionally independent set of 2n−1 symmetries polynomial in the canonical momenta, so that they are in fact superintegrable. These newly discovered systems are all separable in some coordinate system and, typically, they depend on one or more parameters in such a way that the system is superintegrable exactly when some of the parameters are rational numbers. Most of the constructions to date are for n=2 but cases where n>2 are multiplying rapidly. In this article we organize a large class of such systems, many new, and emphasize the underlying mechanisms which enable this phenomena to occur and to prove superintegrability. In addition to proofs of classical superintegrability we show that the 2D caged anisotropic oscillator and a Stäckel transformed version on the 2-sheet hyperboloid are quantum superintegrable for all rational relative frequencies, and that a deformed 2D Kepler-Coulomb system is quantum superintegrable for all rational values of a parameter k in the potential.en_NZ
dc.format.mimetypeapplication/pdf
dc.language.isoen
dc.publisherKieven_NZ
dc.relation.urihttp://www.emis.de/journals/SIGMA/2010/066/en_NZ
dc.rightsThis article has been published in the journal: Symmetry, Integrability and Geometry: Methods and Applications. © 2010 the authors.en_NZ
dc.subjectsuperintegrabilityen_NZ
dc.subjecthidden algebrasen_NZ
dc.subjectquadratic algebrasen_NZ
dc.titleTools for verifying classical and quantum superintegrabilityen_NZ
dc.typeJournal Articleen_NZ
dc.identifier.doi10.3842/SIGMA.2010.066en_NZ
dc.relation.isPartOfSIGMAen_NZ
pubs.begin-page1en_NZ
pubs.elements-id35416
pubs.end-page23en_NZ
pubs.volume6en_NZ


Files in this item

This item appears in the following Collection(s)

Show simple item record