Research Commons
      • Browse 
        • Communities & Collections
        • Titles
        • Authors
        • By Issue Date
        • Subjects
        • Types
        • Series
      • Help 
        • About
        • Collection Policy
        • OA Mandate Guidelines
        • Guidelines FAQ
        • Contact Us
      • My Account 
        • Sign In
        • Register
      View Item 
      •   Research Commons
      • University of Waikato Research
      • Computing and Mathematical Sciences
      • Computing and Mathematical Sciences Papers
      • View Item
      •   Research Commons
      • University of Waikato Research
      • Computing and Mathematical Sciences
      • Computing and Mathematical Sciences Papers
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Relational random forests based on random relational rules

      Anderson, Grant; Pfahringer, Bernhard
      Thumbnail
      Files
      Relational Random Forests.pdf
      463.9Kb
      Link
       ijcai.org
      Citation
      Export citation
      Anderson, G. & Pfahringer, B. (2009). Relational random forests based on random relational rules. In H. Kitano (Ed.), IJCAI'09 Proceedings of the 21st international joint conference on Artificial intelligence (pp. 986-991), San Francisco, USA: Morgan Kaufmann Publishers Inc.
      Permanent Research Commons link: https://hdl.handle.net/10289/4842
      Abstract
      Random Forests have been shown to perform very well in propositional learning. FORF is an upgrade of Random Forests for relational data. In this paper we investigate shortcomings of FORF and propose an alternative algorithm, R⁴F, for generating Random Forests over relational data. R⁴F employs randomly generated relational rules as fully self-contained Boolean tests inside each node in a tree and thus can be viewed as an instance of dynamic propositionalization. The implementation of R⁴F allows for the simultaneous or parallel growth of all the branches of all the trees in the ensemble in an efficient shared, but still single-threaded way. Experiments favorably compare R⁴F to both FORF and the combination of static propositionalization together with standard Random Forests. Various strategies for tree initialization and splitting of nodes, as well as resulting ensemble size, diversity, and computational complexity of R⁴F are also investigated.
      Date
      2009
      Type
      Conference Contribution
      Publisher
      Morgan Kaufmann Publishers Inc. San Francisco, CA, USA
      Rights
      This article has been published in IJCAI'09 Proceedings of the 21st international joint conference on Artificial intelligence. Use with permission.
      Collections
      • Computing and Mathematical Sciences Papers [1452]
      Show full item record  

      Usage

      Downloads, last 12 months
      18
       
       

      Usage Statistics

      For this itemFor all of Research Commons

      The University of Waikato - Te Whare Wānanga o WaikatoFeedback and RequestsCopyright and Legal Statement