Research Commons
      • Browse 
        • Communities & Collections
        • Titles
        • Authors
        • By Issue Date
        • Subjects
        • Types
        • Series
      • Help 
        • About
        • Collection Policy
        • OA Mandate Guidelines
        • Guidelines FAQ
        • Contact Us
      • My Account 
        • Sign In
        • Register
      View Item 
      •   Research Commons
      • University of Waikato Research
      • Science and Engineering
      • Science and Engineering Papers
      • View Item
      •   Research Commons
      • University of Waikato Research
      • Science and Engineering
      • Science and Engineering Papers
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Expression, purification and characterisation of GIGANTEA: A circadian clock-controlled regulator of photoperiodic flowering in plants

      Black, Moyra M.; Stockum, Christine; Dickson, James M.; Putterill, Joanna; Arcus, Vickery L.
      DOI
       10.1016/j.pep.2010.11.009
      Find in your library  
      Citation
      Export citation
      Black, M.M., Stockum, C., Dickson, J.M., Putterill, J. & Arcus, V.L. (2010). Expression, purification and characterisation of GIGANTEA: A circadian clock-controlled regulator of photoperiodic flowering in plants. Protein Expression and Purification, available online 24 November 2010.
      Permanent Research Commons link: https://hdl.handle.net/10289/4857
      Abstract
      The Arabidopsis thaliana (Arabidopsis) GIGANTEA (GI) gene is a central component of the photoperiodic flowering pathway. While it has been 40 years since the first mutant alleles of GI were described much is still unknown about the molecular mechanism of GI action. To investigate the biochemistry and domain organisation (and ultimately to give a greater understanding of the role of GI in floral induction), it is first necessary to produce significant quantities of purified protein. Soluble affinity-tagged full-length GI was expressed in Escherichia coli (E. coli) and was stabilised by the addition of the detergent n-dodecyl-β-d-maltoside (DDM) to storage and purification buffers. Stabilised GI was purified using a variety of chromatographic methods, and characterised using a selection of biochemical techniques including circular dichroism, and dynamic light scattering. This showed that purified GI contained secondary structure, but was polydisperse in solution. Electron microscopy suggests a possible tetramer arrangement of GI. Limited proteolytic digests and mass spectrometry were used to identify potential GI domains. This led to the identification of a predicted 46 kDa amino-terminal GI domain. GI was also expressed in Sf9 insect cells using the baculovirus expression system. GI produced via this route gave insoluble protein.
      Date
      2010
      Type
      Journal Article
      Publisher
      Elsevier
      Collections
      • Science and Engineering Papers [3124]
      Show full item record  

      Usage

       
       
       

      Usage Statistics

      For this itemFor all of Research Commons

      The University of Waikato - Te Whare Wānanga o WaikatoFeedback and RequestsCopyright and Legal Statement