Item

A mechanism for ultra-slow oscillations in the cortical default network

Abstract
When the brain is in its noncognitive “idling” state, functional MRI measurements reveal the activation of default cortical networks whose activity is suppressed during cognitive processing. This default or background mode is characterized by ultra-slow BOLD oscillations (∼0.05 Hz), signaling extremely slow cycling in cortical metabolic demand across distinct cortical regions. Here we describe a model of the cortex which predicts that slow cycling of cortical activity can arise naturally as a result of nonlinear interactions between temporal (Hopf) and spatial (Turing) instabilities. The Hopf instability is triggered by delays in the inhibitory postsynaptic response, while the Turing instability is precipitated by increases in the strength of the gap-junction coupling between interneurons.We comment on possible implications for slow dendritic computation and information processing.
Type
Journal Article
Type of thesis
Series
Citation
Steyn-Ross, M.L., Steyn-Ross, D.A., Sleigh, J.W. & Wilson, M.T. (2011). A mechanism for ultra-slow oscillations in the cortical default network. Bulletin of Mathematical Biology, 73(2), 398-416.
Date
2011
Publisher
SpringerLink
Degree
Supervisors
Rights
Publisher version