Research Commons
      • Browse 
        • Communities & Collections
        • Titles
        • Authors
        • By Issue Date
        • Subjects
        • Types
        • Series
      • Help 
        • About
        • Collection Policy
        • OA Mandate Guidelines
        • Guidelines FAQ
        • Contact Us
      • My Account 
        • Sign In
        • Register
      View Item 
      •   Research Commons
      • University of Waikato Research
      • Computing and Mathematical Sciences
      • Computing and Mathematical Sciences Papers
      • View Item
      •   Research Commons
      • University of Waikato Research
      • Computing and Mathematical Sciences
      • Computing and Mathematical Sciences Papers
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Two-variable Wilson polynomials and the generic superintegrable system on the 3-sphere

      Kalnins, Ernie G.; Miller, W., Jr.; Post, Sarah
      Thumbnail
      Files
      Two-variable.pdf
      467.8Kb
      DOI
       10.3842/SIGMA.2011.051
      Link
       www.emis.de
      Find in your library  
      Citation
      Export citation
      Kalnins, E.G., Miller, W. Jr & Post, S. (2011). Two-variable Wilson polynomials and the generic superintegrable system on the 3-sphere. Symmetry, Integrability and Geometry: Methods and Applications (SIGMA), 7, Article No. 051.
      Permanent Research Commons link: https://hdl.handle.net/10289/5484
      Abstract
      We show that the symmetry operators for the quantum superintegrable system on the 3-sphere with generic 4-parameter potential form a closed quadratic algebra with 6 linearly independent generators that closes at order 6 (as differential operators). Further there is an algebraic relation at order 8 expressing the fact that there are only 5 algebraically independent generators. We work out the details of modeling physically relevant irreducible representations of the quadratic algebra in terms of divided difference operators in two variables. We determine several ON bases for this model including spherical and cylindrical bases. These bases are expressed in terms of two variable Wilson and Racah polynomials with arbitrary parameters, as defined by Tratnik. The generators for the quadratic algebra are expressed in terms of recurrence operators for the one-variable Wilson polynomials. The quadratic algebra structure breaks the degeneracy of the space of these polynomials. In an earlier paper the authors found a similar characterization of one variable Wilson and Racah polynomials in terms of irreducible representations of the quadratic algebra for the quantum superintegrable system on the 2-sphere with generic 3-parameter potential. This indicates a general relationship between 2nd order superintegrable systems and discrete orthogonal polynomials.
      Date
      2011
      Type
      Journal Article
      Rights
      This article has been published in the journal: Symmetry, Integrability and Geometry: Methods and Applications (SIGMA). © Copyright with the author.
      Collections
      • Computing and Mathematical Sciences Papers [1455]
      Show full item record  

      Usage

      Downloads, last 12 months
      46
       
       
       

      Usage Statistics

      For this itemFor all of Research Commons

      The University of Waikato - Te Whare Wānanga o WaikatoFeedback and RequestsCopyright and Legal Statement