Research Commons
      • Browse 
        • Communities & Collections
        • Titles
        • Authors
        • By Issue Date
        • Subjects
        • Types
        • Series
      • Help 
        • About
        • Collection Policy
        • OA Mandate Guidelines
        • Guidelines FAQ
        • Contact Us
      • My Account 
        • Sign In
        • Register
      View Item 
      •   Research Commons
      • University of Waikato Research
      • Science and Engineering
      • Science and Engineering Papers
      • View Item
      •   Research Commons
      • University of Waikato Research
      • Science and Engineering
      • Science and Engineering Papers
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Mechanical behaviour of Titanium, Ti-6Al-4V (wt %) alloy and Ti-47Al-2Cr (at %) alloy produced using powder compact forging

      Nadakuduru, Vijay Navaratna; Zhang, Deliang; Raynova, Stiliana (Stella) Rousseva; Cao, Peng; Gabbitas, Brian
      DOI
       10.4028/www.scientific.net/AMR.275.186
      Link
       www.scientific.net
      Find in your library  
      Citation
      Export citation
      Nadakuduru, V.N., Zhang, D., Raynova, S., Cao, P. Gabbitas, B. (2011). Mechanical behaviour of Titanium, Ti-6Al-4V (wt %) alloy and Ti-47Al-2Cr (at %) alloy produced using powder compact forging. Advanced Materials Research, 275, 186-191.
      Permanent Research Commons link: https://hdl.handle.net/10289/5624
      Abstract
      Powder compact forging was used to produce bulk consolidated titanium and Ti-6Al-4V (wt %) and Ti-47Al-2Cr (at%) alloy disks from hydrogenated and dehydrogenated (HDH) and gas atomised powders (GA) powders (in the case of titanium and Ti-6Al-4V) and a mechanically milled powder (in the case of Ti-47Al-2Cr alloy). The bulk titanium and Ti-6Al-4V (wt %) alloy have been produced by forging of the powder compacts. The Ti-47Al-2Cr (at %) alloy was produced using canned powder compact forging of a Ti/Al/Cr composite powder. The purpose of the present study is to investigate the deformation and fracture behaviour of the bulk consolidated as-forged materials, by conducting tensile testing at room temperature (RT) and examination of the fractured specimens which had near-α, α + β and γ phase structures, respectively. It was found that as-forged bulk titanium disk produced using HDH powder showed a yield point with a yield strength of ~700 MPa and with a considerable amount of ductility. While the as-forged Ti-6Al-4V (wt %) alloy produced using HDH powder, fractured prematurely without any yielding. On the other hand yielding was observed in the as-forged Ti-6Al-4V (wt %) alloy produced using GA powder, showing a yield strength of ~970 MPa and a considerable amount of plastic strain to fracture. The bulk consolidated Ti-47Al-2Cr (at %) alloy also fractured prematurely with fracture strength of ~125 MPa. The mechanical behaviour of the as-forged bulk materials was found to be dependent on several factors such as initial powders used, green density of the powder compact, forging parameters used during forging. It was expected that the entrapped gas in green compacts, absorbed oxygen, porosity and inter-particle bonding play an important role on the quality of the as-forged material, which in turn affected the mechanical behaviour of the bulk material.
      Date
      2011
      Type
      Journal Article
      Publisher
      Trans Tech Publications
      Collections
      • Science and Engineering Papers [3124]
      Show full item record  

      Usage

       
       
       

      Usage Statistics

      For this itemFor all of Research Commons

      The University of Waikato - Te Whare Wānanga o WaikatoFeedback and RequestsCopyright and Legal Statement