Research Commons
      • Browse 
        • Communities & Collections
        • Titles
        • Authors
        • By Issue Date
        • Subjects
        • Types
        • Series
      • Help 
        • About
        • Collection Policy
        • OA Mandate Guidelines
        • Guidelines FAQ
        • Contact Us
      • My Account 
        • Sign In
        • Register
      View Item 
      •   Research Commons
      • University of Waikato Research
      • Science and Engineering
      • Science and Engineering Papers
      • View Item
      •   Research Commons
      • University of Waikato Research
      • Science and Engineering
      • Science and Engineering Papers
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Preface: Enhancing tephrochronology and its application (INTREPID project): Hiroshi Machida commemorative volume

      Lowe, David J.; Davies, Siwan M.; Moriwaki, Hiroshi; Pearce, Nicholas J.G.; Suzuki, Takehiko
      DOI
       10.1016/j.quaint.2011.08.012
      Link
       www.sciencedirect.com
      Find in your library  
      Citation
      Export citation
      Lowe, D.J., Davies, S.M., Moriwaki, H., Pearce, N.J.G. & Suzuki, T. (2011). Preface: Enhancing tephrochronology and its application (INTREPID project): Hiroshi Machida commemorative volume. Quaternary International, available online 23 August 2011.
      Permanent Research Commons link: https://hdl.handle.net/10289/5736
      Abstract
      Tephrochronology is the characterization and use of tephras – the explosively-erupted, unconsolidated, pyroclastic products of volcanic eruptions – or cryptotephras (glass-shard and/or crystal concentrations not visible as layers) as a unique stratigraphic linking, synchronizing, and dating tool. The word ‘tephra’ is derived directly from the Greek word tephra meaning ‘ashes’. Although the method is founded in stratigraphy, tephrochronology relies also on characterizing or ‘fingerprinting’ inherent tephra-derived components using laboratory-based analysis to complement field-based evidence. Such analysis includes the petrographic identification of mineral assemblages and the geochemical assay of glass shards, melt inclusions, or crystals (minerals including plagioclase, olivine, pyroxenes, amphiboles, biotite, or Fe–Ti oxides such as titanomagnetite) using the electron microprobe and other instruments including laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) ( [Lowe, 2011] and [1] ). These data are supported by the derivation of numerical ages on tephras/cryptotephras using a range of techniques including radiometric (e.g., radiocarbon, fission track, luminescence), incremental (e.g., layering in ice cores, varves, dendrochronology), age-equivalence (e.g., orbital tuning, magnetopolarity, palynostratigraphy), relative dating (e.g., obsidan hydration), and historical observation. Ages are also obtained using Bayesian-based flexible depositional modelling and wiggle matching (e.g., [Lowe et al., 2007] and Lowe et al., 2008 D.J. Lowe, P.A.R. Shane, B.V. Alloway and R.M. Newnham, Fingerprints and age models for widespread New Zealand tephra marker beds erupted since 30,000 years ago: a framework for NZ-INTIMATE.. Quaternary Science Reviews, 27 (2008), pp. 95–126. [Lowe et al., 2008] ).
      Date
      2011
      Type
      Journal Article
      Publisher
      Elsevier
      Collections
      • Science and Engineering Papers [3122]
      Show full item record  

      Usage

       
       
       

      Usage Statistics

      For this itemFor all of Research Commons

      The University of Waikato - Te Whare Wānanga o WaikatoFeedback and RequestsCopyright and Legal Statement