Research Commons
      • Browse 
        • Communities & Collections
        • Titles
        • Authors
        • By Issue Date
        • Subjects
        • Types
        • Series
      • Help 
        • About
        • Collection Policy
        • OA Mandate Guidelines
        • Guidelines FAQ
        • Contact Us
      • My Account 
        • Sign In
        • Register
      View Item 
      •   Research Commons
      • University of Waikato Research
      • Science and Engineering
      • Science and Engineering Papers
      • View Item
      •   Research Commons
      • University of Waikato Research
      • Science and Engineering
      • Science and Engineering Papers
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Microstructural evolution during mechanical milling of Ti/Al powder mixture and production of intermetallic TiAl cathode target

      Gabbitas, Brian; Cao, Peng; Raynova, Stiliana (Stella) Rousseva; Zhang, Deliang
      DOI
       10.1007/s10853-011-5886-9
      Link
       www.springerlink.com
      Find in your library  
      Citation
      Export citation
      Gabbitas, B., Cao, P., Raynova, S. & Zhang, D. (2011). Microstructural evolution during mechanical milling of Ti/Al powder mixture and production of intermetallic TiAl cathode target. Journal of Material Science, published online on 07 September 2011.
      Permanent Research Commons link: https://hdl.handle.net/10289/5818
      Abstract
      Titanium aluminides are of great technological interest because of their attractive mechanical properties. Mechanical milling/alloying is a promising powder metallurgical technique, which can achieve ultrafine, uniform and manipulable microstructures. In this study, we employed a recently revisited discus mill to produce a composite Ti– (50–57) at.%Al powder feedstock, which is suitable for hot consolidation to produce bulk cathode targets for physical vapour deposition (PVD) coatings. The effects of milling time, quantity of process control agent (PCA) and discus-topowder weight ratio (DPR) on the microstructure evolution of the attendant Ti/Al composite powder were investigated in detail. It was found that to produce Ti/Al composite powders with a fine particle size and a uniform microstructure, the practicable processing parameters should be 2 or 3% isopropanol addition as PCA, 12 h of milling time and at least 13:1 DPR weight ratio. Cathode targets were produced by hot isostatic pressing (HIPing) the as-milled powders. The targets were then used to produce a PVD TiAlN coating which had an average microhardness of 2400 HV.
      Date
      2011
      Type
      Journal Article
      Publisher
      Springer
      Collections
      • Science and Engineering Papers [3122]
      Show full item record  

      Usage

       
       
       

      Usage Statistics

      For this itemFor all of Research Commons

      The University of Waikato - Te Whare Wānanga o WaikatoFeedback and RequestsCopyright and Legal Statement