dc.contributor.author | Stokes, Tim E. | |
dc.date.accessioned | 2011-11-08T21:03:56Z | |
dc.date.available | 2011-11-08T21:03:56Z | |
dc.date.issued | 2011 | |
dc.identifier.citation | Stokes, T.E. (2011). Axioms for function semigroups with agreement quasi-order. Algebra Universalis, 66(1-2), 85-98. | en_NZ |
dc.identifier.uri | https://hdl.handle.net/10289/5859 | |
dc.description.abstract | The agreement quasi-order on pairs of (partial) transformations on a set X is defined as follows: (f, g) ≼ (h, k) if whenever f, g are defined and agree, so do h, k. We axiomatize function semigroups and monoids equipped with this quasi-order, thereby providing a generalisation of first projection quasi-ordered ∩-semigroups of functions. As an application, axiomatizations are obtained for groups and inverse semigroups of injective functions equipped with the quasi-order of fix-set inclusion. All axiomatizations are finite. | en_NZ |
dc.language.iso | en | |
dc.publisher | Springer | en_NZ |
dc.relation.uri | http://www.springerlink.com/content/g2114n0167n4u118/ | en_NZ |
dc.subject | function semigroup | en_NZ |
dc.subject | agreement quasi-order | en_NZ |
dc.subject | fix-set quasi-order | en_NZ |
dc.title | Axioms for function semigroups with agreement quasi-order | en_NZ |
dc.type | Journal Article | en_NZ |
dc.identifier.doi | 10.1007/s00012-011-0152-1 | en_NZ |
dc.relation.isPartOf | Algebra Universalis | en_NZ |
pubs.begin-page | 85 | en_NZ |
pubs.elements-id | 35594 | |
pubs.end-page | 98 | en_NZ |
pubs.issue | 1-2 | en_NZ |
pubs.volume | 66 | en_NZ |