Show simple item record  

dc.contributor.authorStokes, Tim E.
dc.date.accessioned2011-11-08T21:03:56Z
dc.date.available2011-11-08T21:03:56Z
dc.date.issued2011
dc.identifier.citationStokes, T.E. (2011). Axioms for function semigroups with agreement quasi-order. Algebra Universalis, 66(1-2), 85-98.en_NZ
dc.identifier.urihttps://hdl.handle.net/10289/5859
dc.description.abstractThe agreement quasi-order on pairs of (partial) transformations on a set X is defined as follows: (f, g) ≼ (h, k) if whenever f, g are defined and agree, so do h, k. We axiomatize function semigroups and monoids equipped with this quasi-order, thereby providing a generalisation of first projection quasi-ordered ∩-semigroups of functions. As an application, axiomatizations are obtained for groups and inverse semigroups of injective functions equipped with the quasi-order of fix-set inclusion. All axiomatizations are finite.en_NZ
dc.language.isoen
dc.publisherSpringeren_NZ
dc.relation.urihttp://www.springerlink.com/content/g2114n0167n4u118/en_NZ
dc.subjectfunction semigroupen_NZ
dc.subjectagreement quasi-orderen_NZ
dc.subjectfix-set quasi-orderen_NZ
dc.titleAxioms for function semigroups with agreement quasi-orderen_NZ
dc.typeJournal Articleen_NZ
dc.identifier.doi10.1007/s00012-011-0152-1en_NZ
dc.relation.isPartOfAlgebra Universalisen_NZ
pubs.begin-page85en_NZ
pubs.elements-id35594
pubs.end-page98en_NZ
pubs.issue1-2en_NZ
pubs.volume66en_NZ


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record