Show simple item record  

dc.contributor.authorPfahringer, Bernhard
dc.coverage.spatialConference held at Perth, Australiaen_NZ
dc.date.accessioned2012-05-28T04:37:07Z
dc.date.available2012-05-28T04:37:07Z
dc.date.copyright2011
dc.date.issued2011
dc.identifier.citationPfahringer, B. (2011). Semi-random model tree ensembles: An effective and scalable regression method. In D.Wang & M. Reynolds (Eds.): AI 2011: Advances in Artificial Intelligence, Lecture Notes in Computer Science, 2011, Volume 7106/2011 (pp. 231-240). Springer-Verlag Berlin Heidelberg.en_NZ
dc.identifier.isbn978-3-642-25831-2
dc.identifier.issn0302-9743
dc.identifier.urihttps://hdl.handle.net/10289/6372
dc.description.abstractWe present and investigate ensembles of semi-random model trees as a novel regression method. Such ensembles combine the scalability of tree-based methods with predictive performance rivalling the state of the art in numeric prediction. An empirical investigation shows that Semi-Random Model Trees produce predictive performance which is competitive with state-of-the-art methods like Gaussian Processes Regression or Additive Groves of Regression Trees. The training and optimization of Random Model Trees scales better than Gaussian Processes Regression to larger datasets, and enjoys a constant advantage over Additive Groves of the order of one to two orders of magnitude.en_NZ
dc.language.isoen
dc.publisherSpringeren_NZ
dc.relation.urihttp://www.springerlink.com/content/01332xrk50487022/en_NZ
dc.source24th Australasian Joint Conference on Artificial Intelligence (AI)en_NZ
dc.subjectcomputer scienceen_NZ
dc.subjectregressionen_NZ
dc.subjectensembles
dc.subjectsupervised learning
dc.subjectrandomization
dc.subjectMachine learning
dc.titleSemi-random model tree ensembles: An effective and scalable regression methoden_NZ
dc.typeConference Contributionen_NZ
dc.identifier.doi10.1007/978-3-642-25832-9_24en_NZ
dc.relation.isPartOfProc Twenty-fourth Australasian Joint Conference on Advances in Artificial Intelligenceen_NZ
pubs.begin-page231en_NZ
pubs.elements-id21611
pubs.end-page240en_NZ
pubs.finish-date2011-12-08en_NZ
pubs.place-of-publicationBerlinen_NZ
pubs.start-date2011-12-05en_NZ
pubs.volumeLNAI 7106en_NZ


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record