Research Commons
      • Browse 
        • Communities & Collections
        • Titles
        • Authors
        • By Issue Date
        • Subjects
        • Types
        • Series
      • Help 
        • About
        • Collection Policy
        • OA Mandate Guidelines
        • Guidelines FAQ
        • Contact Us
      • My Account 
        • Sign In
        • Register
      View Item 
      •   Research Commons
      • University of Waikato Research
      • Computing and Mathematical Sciences
      • Computing and Mathematical Sciences Papers
      • View Item
      •   Research Commons
      • University of Waikato Research
      • Computing and Mathematical Sciences
      • Computing and Mathematical Sciences Papers
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Multi-label classification using boolean matrix decomposition

      Wicker, Jörg; Pfahringer, Bernhard; Kramer, Stefan
      DOI
       10.1145/2245276.2245311
      Find in your library  
      Citation
      Export citation
      Wicker, J., Pfahringer, B. & Kramer, S. (2012). Multi-label classification using boolean matrix decomposition. In Proceedings of the 27th Annual ACM Symposium on Applied Computing (SAC '12). ACM, New York, 179-186.
      Permanent Research Commons link: https://hdl.handle.net/10289/6632
      Abstract
      This paper introduces a new multi-label classifier based on Boolean matrix decomposition. Boolean matrix decomposition is used to extract, from the full label matrix, latent labels representing useful Boolean combinations of the original labels. Base level models predict latent labels, which are subsequently transformed into the actual labels by Boolean matrix multiplication with the second matrix from the decomposition. The new method is tested on six publicly available datasets with varying numbers of labels. The experimental evaluation shows that the new method works particularly well on datasets with a large number of labels and strong dependencies among them.
      Date
      2012
      Type
      Conference Contribution
      Publisher
      ACM
      Collections
      • Computing and Mathematical Sciences Papers [1454]
      Show full item record  

      Usage

       
       
       

      Usage Statistics

      For this itemFor all of Research Commons

      The University of Waikato - Te Whare Wānanga o WaikatoFeedback and RequestsCopyright and Legal Statement