Research Commons
      • Browse 
        • Communities & Collections
        • Titles
        • Authors
        • By Issue Date
        • Subjects
        • Types
        • Series
      • Help 
        • About
        • Collection Policy
        • OA Mandate Guidelines
        • Guidelines FAQ
        • Contact Us
      • My Account 
        • Sign In
        • Register
      View Item 
      •   Research Commons
      • University of Waikato Research
      • Computing and Mathematical Sciences
      • Computing and Mathematical Sciences Papers
      • View Item
      •   Research Commons
      • University of Waikato Research
      • Computing and Mathematical Sciences
      • Computing and Mathematical Sciences Papers
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Scalable and efficient multi-label classification for evolving data streams

      Read, Jesse; Bifet, Albert; Holmes, Geoffrey; Pfahringer, Bernhard
      DOI
       10.1007/s10994-012-5279-6
      Find in your library  
      Citation
      Export citation
      Read, J., Bifet, A., Holmes, G. and Pfahringer, B. (2012). Scalable and efficient multi-label classification for evolving data streams. Machine Learning, 88(1-2), 243-272.
      Permanent Research Commons link: https://hdl.handle.net/10289/6633
      Abstract
      Many challenging real world problems involve multi-label data streams. Efficient methods exist for multi-label classification in non-streaming scenarios. However, learning in evolving streaming scenarios is more challenging, as classifiers must be able to deal with huge numbers of examples and to adapt to change using limited time and memory while being ready to predict at any point.

      This paper proposes a new experimental framework for learning and evaluating on multi-label data streams, and uses it to study the performance of various methods. From this study, we develop a multi-label Hoeffding tree with multi-label classifiers at the leaves. We show empirically that this method is well suited to this challenging task. Using our new framework, which allows us to generate realistic multi-label data streams with concept drift (as well as real data), we compare with a selection of baseline methods, as well as new learning methods from the literature, and show that our Hoeffding tree method achieves fast and more accurate performance.
      Date
      2012
      Type
      Journal Article
      Publisher
      Springer
      Collections
      • Computing and Mathematical Sciences Papers [1455]
      Show full item record  

      Usage

       
       
       

      Usage Statistics

      For this itemFor all of Research Commons

      The University of Waikato - Te Whare Wānanga o WaikatoFeedback and RequestsCopyright and Legal Statement