Research Commons
      • Browse 
        • Communities & Collections
        • Titles
        • Authors
        • By Issue Date
        • Subjects
        • Types
        • Series
      • Help 
        • About
        • Collection Policy
        • OA Mandate Guidelines
        • Guidelines FAQ
        • Contact Us
      • My Account 
        • Sign In
        • Register
      View Item 
      •   Research Commons
      • University of Waikato Research
      • Science and Engineering
      • Science and Engineering Papers
      • View Item
      •   Research Commons
      • University of Waikato Research
      • Science and Engineering
      • Science and Engineering Papers
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      A predictive model of community assembly that incorporates intraspecific trait variation

      Laughlin, Daniel C.; Joshi, Chaitanya; van Bodegom, Peter M.; Bastow, Zachary A.; Fulé, Peter Z.
      DOI
       10.1111/j.1461-0248.2012.01852.x
      Find in your library  
      Citation
      Export citation
      Laughlin, D. C., Joshi, C., van Bodegom, P. M., Bastow, Z. A. & Fulé, P. Z. (2012). A predictive model of community assembly that incorporates intraspecific trait variation. Ecology Letters, 15(11), 1291-1299.
      Permanent Research Commons link: https://hdl.handle.net/10289/6649
      Abstract
      Community assembly involves two antagonistic processes that select functional traits in opposite directions. Environmental filtering tends to increase the functional similarity of species within communities leading to trait convergence, whereas competition tends to limit the functional similarity of species within communities leading to trait divergence. Here, we introduce a new hierarchical Bayesian model that incorporates intraspecific trait variation into a predictive framework to unify classic coexistence theory and evolutionary biology with recent trait-based approaches. Model predictions exhibited a significant positive correlation (r = 0.66) with observed relative abundances along a 10 °C gradient in mean annual temperature. The model predicted the correct dominant species in half of the plots, and accurately reproduced species' temperature optimums. The framework is generalizable to any ecosystem as it can accommodate any species pool, any set of functional traits and multiple environmental gradients, and it eliminates some of the criticisms associated with recent trait-based community assembly models.
      Date
      2012
      Type
      Journal Article
      Publisher
      Wiley
      Collections
      • Computing and Mathematical Sciences Papers [1388]
      • Science and Engineering Papers [2932]
      Show full item record  

      Usage

       
       
       

      Usage Statistics

      For this itemFor all of Research Commons

      The University of Waikato - Te Whare Wānanga o WaikatoFeedback and RequestsCopyright and Legal Statement