Research Commons
      • Browse 
        • Communities & Collections
        • Titles
        • Authors
        • By Issue Date
        • Subjects
        • Types
        • Series
      • Help 
        • About
        • Collection Policy
        • OA Mandate Guidelines
        • Guidelines FAQ
        • Contact Us
      • My Account 
        • Sign In
        • Register
      View Item 
      •   Research Commons
      • University of Waikato Research
      • Science and Engineering
      • Science and Engineering Papers
      • View Item
      •   Research Commons
      • University of Waikato Research
      • Science and Engineering
      • Science and Engineering Papers
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Spatial variation of structural and functional indicators in a large New Zealand river

      Collier, Kevin J.; Clapcott, Joanne E.; Duggan, Ian C.; Hamilton, David P.; Hamer, Mark P.; Young, Roger G.
      DOI
       10.1002/rra.2609
      Find in your library  
      Citation
      Export citation
      Collier, K.J., Clapcott, J.E., Duggan, I.C., Hamilton, D.P., Hamer, M. & Young, R.G. (2012). Spatial variation of structural and functional indicators in a large New Zealand river. River Research and Applications, article published online: 2 OCT 2012.
      Permanent Research Commons link: https://hdl.handle.net/10289/6747
      Abstract
      The ecological responses of large rivers to human pressure can be assessed at multiple scales using a variety of indicators, but little is known about how the responses of ecological indicators vary over small spatial scales. We sampled phytoplankton, zooplankton and macroinvertebrates and measured river metabolism and cotton strip breakdown rates (loss in tensile strength) in contrasting habitats along a 21-km urban-industrial reach on a constrained section of the Waikato River, New Zealand's longest river. Rates of gross primary production (2.8–7.8 g O₂/m²/d) and ecosystem respiration (3.5–12.7 g O₂/m²/d) did not differ consistently between near-shore (2–3 m from river side) and far-shore (ca. 10 m from side) locations, urban and industrial reaches or between autumn and spring sampling occasions. Rates of cotton decay (−k) ranged from 0.014 to 0.112 per day and were typically faster at far-shore locations and in the section of river receiving industrial inputs, but slower in spring compared with autumn. Nonmetric multidimensional scaling analysis of phytoplankton and zooplankton data did not reveal spatial patterns relating to pressure or location (embayment, edge, mid-river). However, the macroinvertebrate ordination suggested distinct communities for the mid-river benthos compared with near-shore communities and a distinction between sites in the urban reach and the industrial reach. Our results suggest that large-river macroinvertebrate communities and cotton decay rates can be influenced to varying degrees by reach-scale pressures and local habitat conditions. Monitoring designs in spatially complex rivers should account for habitat heterogeneity that can lead to differences in structural and functional indicator responses.
      Date
      2012
      Type
      Journal Article
      Publisher
      Wiley
      Collections
      • Science and Engineering Papers [3124]
      Show full item record  

      Usage

       
       
       

      Usage Statistics

      For this itemFor all of Research Commons

      The University of Waikato - Te Whare Wānanga o WaikatoFeedback and RequestsCopyright and Legal Statement