Research Commons
      • Browse 
        • Communities & Collections
        • Titles
        • Authors
        • By Issue Date
        • Subjects
        • Types
        • Series
      • Help 
        • About
        • Collection Policy
        • OA Mandate Guidelines
        • Guidelines FAQ
        • Contact Us
      • My Account 
        • Sign In
        • Register
      View Item 
      •   Research Commons
      • University of Waikato Research
      • Science and Engineering
      • Science and Engineering Papers
      • View Item
      •   Research Commons
      • University of Waikato Research
      • Science and Engineering
      • Science and Engineering Papers
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Catchment land use and trophic state impacts on phytoplankton composition: a case study from the Rotorua lakes’ district, New Zealand

      Paul, Wendy J.; Hamilton, David P.; Ostrovsky, Ilia; Miller, Steven D.; Zhang, Austin; Muraoka, Kohji
      DOI
       10.1007/s10750-012-1147-4
      Find in your library  
      Citation
      Export citation
      Paul, W. J., Hamilton, D. P., Ostrovsky, I., Miller, S. D., Zhang, A., & Muraoka, K. (2012). Catchment land use and trophic state impacts on phytoplankton composition: a case study from the Rotorua lakes’ district, New Zealand. Hydrobiologia, 698(1), 133-146.
      Permanent Research Commons link: https://hdl.handle.net/10289/6771
      Abstract
      Trophic state of lakes has been related to catchment land use, but direct links between phytoplankton taxa and land use are limited. Phytoplankton composition, represented by relative cell abundance of phyla, was measured over a period of 4 years in 11 lakes in the Rotorua region, New Zealand. The lakes differed in morphometry, trophic state and land use (as percentage catchment area). We tested whether relative proportion of land uses, indirectly representing relative nutrient loading, was the overarching driver of phytoplankton composition. Trophic state was correlated negatively with native forest and positively with pasture and urban area. Cyanoprokaryota were correlated negatively with native forest and positively with pasture and trophic state, Chlorophyta were correlated positively with native forest and urban land use and negatively with pasture and trophic state, and Bacillariophyta were positively correlated with dissolved reactive silica to dissolved inorganic nitrogen (Si:DIN) and Si to dissolved reactive phosphorus (Si:DRP) ratios. Lakes with higher nutrient loads had higher trophic state and Cyanoprokaryota dominance. Chlorophyta were negatively correlated with Cyanoprokaryota and Bacillariophyta, suggesting competition amongst these groups. Our results apply to lakes potentially subject to changes in catchment land use, which may have implications for trophic state, phytoplankton composition and Cyanoprokaryota blooms.
      Date
      2012
      Type
      Journal Article
      Publisher
      Springer-Verlag
      Collections
      • Computing and Mathematical Sciences Papers [1441]
      • Science and Engineering Papers [3019]
      Show full item record  

      Usage

       
       
       

      Usage Statistics

      For this itemFor all of Research Commons

      The University of Waikato - Te Whare Wānanga o WaikatoFeedback and RequestsCopyright and Legal Statement